BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36361176)

  • 1. Microseismic Precursors of Coal Mine Water Inrush Characterized by Different Waveforms Manifest as Dry to Wet Fracturing.
    Yu R; Qian J; Liu L; Zha H; Li N
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach for water-inrush risk assessment of deep coal seam mining: a case study in Xinlongzhuang coal mine.
    Gu Q; Huang Z; Li S; Zeng W; Wu Y; Zhao K
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43163-43176. PubMed ID: 32729037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rock Damage Model Coupled Stress-Seepage and Its Application in Water Inrush from Faults in Coal Mines.
    Shao J; Zhang W; Wu X; Lei Y; Wu X
    ACS Omega; 2022 Apr; 7(16):13604-13614. PubMed ID: 35559151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microseismic energy distribution and impact risk analysis of complex heterogeneous spatial evolution of extra-thick layered strata.
    Lai X; Jia C; Cui F; Chen J; Zhou Y; Feng G; Gao Y
    Sci Rep; 2022 Jun; 12(1):10832. PubMed ID: 35760932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gray Evaluation of Water Inrush Risk in Deep Mining Floor.
    Qu X; Yu X; Qu X; Qiu M; Gao W
    ACS Omega; 2021 Jun; 6(22):13970-13986. PubMed ID: 34124422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of particle erosion on mining-induced water inrush hazard of karst collapse pillar.
    Ma D; Wang J; Li Z
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19719-19728. PubMed ID: 31090004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-inrush mechanism from the head-on working face roof in a Jurassic coal seam in the Ordos Basin.
    Shi L; Qu X; Qiu M; Han J; Zhang W
    PLoS One; 2024; 19(3):e0298399. PubMed ID: 38470875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise application of grouting technology in underground coal mining: water inrush risk of floor elimination.
    Zhai M; Bai H
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24361-24376. PubMed ID: 36342607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preventing water-inrush from floor in coal working face with paste-like backfill technology.
    Qu X; Shi L; Han J
    Sci Rep; 2023 Sep; 13(1):15947. PubMed ID: 37743362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mine Water Inrush Risk Assessment Evaluation Based on the GIS and Combination Weight-Cloud Model: A Case Study.
    Liu W; Han M; Meng X; Qin Y
    ACS Omega; 2021 Dec; 6(48):32671-32681. PubMed ID: 34901616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk assessment of coal mine water inrush based on PCA-DBN.
    Zhang Y; Tang S; Shi K
    Sci Rep; 2022 Jan; 12(1):1370. PubMed ID: 35079120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the damage characteristics of overburden of mining roof in deeply buried coal seam.
    Long T; Hou E; Xie X; Fan Z; Tan E
    Sci Rep; 2022 Jul; 12(1):11141. PubMed ID: 35778594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multifactor Quantitative Assessment Model for Safe Mining after Roof Drainage in the Liangshuijing Coal Mine.
    Gao C; Wang D; Liu K; Deng G; Li J; Jie B
    ACS Omega; 2022 Aug; 7(30):26437-26454. PubMed ID: 35936470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microseismic Dynamic Response and Multi-Source Warning during Rockburst Monitoring Based on Weight Decision Analysis.
    Tian J; Chen D; Liu Z; Sun W
    Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of microseismic events in rock burst mines based on MEA-BP neural network.
    Lan T; Guo X; Zhang Z; Liu M
    Sci Rep; 2023 Jun; 13(1):9523. PubMed ID: 37308479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Criterion of Grouting Pressure in Regional Advance Grouting Treatment to Prevent Water Disaster from Karst Aquifers in Coal Seam Floors.
    Zhang W; Wu F; Han C; Li X; Peng Z; Ren Q; Yang F; Zhang D
    ACS Omega; 2022 Aug; 7(33):29274-29286. PubMed ID: 36033679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic wave prospecting of water-conducting fractured zones in coal mining.
    Zhao B; He S; Bai K; Lu X; Wang W
    Sci Rep; 2024 Mar; 14(1):7036. PubMed ID: 38528085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of mixing water source and response mechanism of radium and radon under mining in limestone of coal seam floor.
    Huang P; Gao H; Su Q; Zhang Y; Cui M; Chai S; Li Y; Jin Y
    Sci Total Environ; 2023 Jan; 857(Pt 3):159666. PubMed ID: 36302409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of coal seam floor water bursting in multi-aquifer Gequan coal mine, China.
    Lv S; Zeng Y; Zhang L; Zhao H
    Sci Rep; 2022 Oct; 12(1):18076. PubMed ID: 36302953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-constraint and multi-objective optimization layout method for a mine water inrush monitoring network.
    Du Z; Wu Q; Zhao Y; Zhang X; Yao Y
    Sci Rep; 2023 Jul; 13(1):11817. PubMed ID: 37479742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.