These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36361400)

  • 21. Granulometric and magnetic properties of deposited particles in the Beijing subway and the implications for air quality management.
    Cui G; Zhou L; Dearing J
    Sci Total Environ; 2016 Oct; 568():1059-1068. PubMed ID: 27372891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Concentration, composition, and exposure contributions of fine particulate matter on subway concourses in China.
    Ji W; Liu C; Liu Z; Wang C; Li X
    Environ Pollut; 2021 Apr; 275():116627. PubMed ID: 33582633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of platform subway depth on the presence of Airborne PM
    Figueroa-Lara JJ; Murcia-González JM; García-Martínez R; Romero-Romo M; Torres Rodríguez M; Mugica-Álvarez V
    J Hazard Mater; 2019 Sep; 377():427-436. PubMed ID: 31176078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona, Spain.
    Martins V; Moreno T; Minguillón MC; van Drooge BL; Reche C; Amato F; de Miguel E; Capdevila M; Centelles S; Querol X
    Environ Pollut; 2016 Jan; 208(Pt A):125-136. PubMed ID: 26189044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Distribution of airborne fungi, particulate matter and carbon dioxide in Seoul metropolitan subway stations].
    Kim KY; Park JB; Kim CN; Lee KJ
    J Prev Med Public Health; 2006 Jul; 39(4):325-30. PubMed ID: 16910306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Passive exposure to pollutants from conventional cigarettes and new electronic smoking devices (IQOS, e-cigarette) in passenger cars.
    Schober W; Fembacher L; Frenzen A; Fromme H
    Int J Hyg Environ Health; 2019 Apr; 222(3):486-493. PubMed ID: 30685192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Psychophysiological Response According to the Greenness Index of Subway Station Space.
    Kim WJ; Lee TK
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ventilation impacts on infection risk mitigation, improvement of environmental quality and energy efficiency for subway carriages.
    Ren C; Chen H; Wang J; Feng Z; Cao SJ
    Build Environ; 2022 Aug; 222():109358. PubMed ID: 35822126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Air quality inside subway metro indoor environment worldwide: A review.
    Xu B; Hao J
    Environ Int; 2017 Oct; 107():33-46. PubMed ID: 28651166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of Urban Subway Microenvironment Exposure- A Case of Nanjing in China.
    Mao P; Li J; Xiong L; Wang R; Wang X; Tan Y; Li H
    Int J Environ Res Public Health; 2019 Feb; 16(4):. PubMed ID: 30791659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Manganese concentrations in the air of the Montreal (Canada) subway in relation to surface automobile traffic density.
    Boudia N; Halley R; Kennedy G; Lambert J; Gareau L; Zayed J
    Sci Total Environ; 2006 Jul; 366(1):143-7. PubMed ID: 16297437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial characteristics of fine particulate matter in subway stations: Source apportionment and health risks.
    Ji W; Zhao K; Liu C; Li X
    Environ Pollut; 2022 Jul; 305():119279. PubMed ID: 35405218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A real time QSAR-driven toxicity evaluation and monitoring of iron containing fine particulate matters in indoor subway stations.
    Safder U; Nam K; Kim D; Heo S; Yoo C
    Ecotoxicol Environ Saf; 2019 Mar; 169():361-369. PubMed ID: 30458403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-vehicle carbon dioxide concentration in commuting cars in Bangkok, Thailand.
    Luangprasert M; Vasithamrong C; Pongratananukul S; Chantranuwathana S; Pumrin S; De Silva IP
    J Air Waste Manag Assoc; 2017 May; 67(5):623-633. PubMed ID: 27960651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Hygienic evaluation of the air environment in subway cars].
    Gribanov OI; Gofmekler VA; Garshin IM
    Gig Sanit; 1981 Jul; (7):67-8. PubMed ID: 7306296
    [No Abstract]   [Full Text] [Related]  

  • 36. Application of the Bayesian spline method to analyze real-time measurements of ultrafine particle concentration in the Parisian subway.
    Pétremand R; Wild P; Crézé C; Suarez G; Besançon S; Jouannique V; Debatisse A; Guseva Canu I
    Environ Int; 2021 Nov; 156():106773. PubMed ID: 34425645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radon and PM
    Hwang SH; Park WM
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35242-35248. PubMed ID: 30341751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Concentration and characterization of airborne particles in Tehran's subway system.
    Kamani H; Hoseini M; Seyedsalehi M; Mahdavi Y; Jaafari J; Safari GH
    Environ Sci Pollut Res Int; 2014 Jun; 21(12):7319-28. PubMed ID: 24573466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on infection risk in a negative pressure ward under different fresh airflow patterns based on a radiation air conditioning system.
    Zhou C; Ding Y; Ye L
    Environ Sci Pollut Res Int; 2024 Feb; 31(9):14135-14155. PubMed ID: 38270763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioaerosols in the Barcelona subway system.
    Triadó-Margarit X; Veillette M; Duchaine C; Talbot M; Amato F; Minguillón MC; Martins V; de Miguel E; Casamayor EO; Moreno T
    Indoor Air; 2017 May; 27(3):564-575. PubMed ID: 27687789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.