BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36361594)

  • 1. Identification and Functional Characterization of Acyl-ACP Thioesterases B (GhFatBs) Responsible for Palmitic Acid Accumulation in Cotton Seeds.
    Liu B; Sun Y; Wang X; Xue J; Wang J; Jia X; Li R
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification and analysis of soybean acyl-ACP thioesterase gene family reveals the role of GmFAT to improve fatty acid composition in soybean seed.
    Zhou Z; Lakhssassi N; Knizia D; Cullen MA; El Baz A; Embaby MG; Liu S; Badad O; Vuong TD; AbuGhazaleh A; Nguyen HT; Meksem K
    Theor Appl Genet; 2021 Nov; 134(11):3611-3623. PubMed ID: 34319424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2 encoding β-ketoacyl-ACP synthase II (KASII).
    Liu Q; Wu M; Zhang B; Shrestha P; Petrie J; Green AG; Singh SP
    Plant Biotechnol J; 2017 Jan; 15(1):132-143. PubMed ID: 27381745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stearoyl-ACP Δ
    Liu B; Sun Y; Xue J; Mao X; Jia X; Li R
    Front Plant Sci; 2019; 10():703. PubMed ID: 31214221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a palmitoyl-acyl carrier protein thioesterase (FatB1) in cotton.
    Pirtle RM; Yoder DW; Huynh TT; Nampaisansuk M; Pirtle IL; Chapman KD
    Plant Cell Physiol; 1999 Feb; 40(2):155-63. PubMed ID: 10202811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities.
    Aznar-Moreno JA; Venegas-Calerón M; Martínez-Force E; Garcés R; Salas JJ
    Planta; 2016 Aug; 244(2):479-90. PubMed ID: 27095109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous silencing of GhFAD2-1 and GhFATB enhances the quality of cottonseed oil with high oleic acid.
    Liu F; Zhao YP; Zhu HG; Zhu QH; Sun J
    J Plant Physiol; 2017 Aug; 215():132-139. PubMed ID: 28644971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases.
    Zhang X; Li M; Agrawal A; San KY
    Metab Eng; 2011 Nov; 13(6):713-22. PubMed ID: 22001432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous Expression of
    Liu Y; Han J; Li Z; Jiang Z; Luo L; Zhang Y; Chen M; Yang Y; Liu Z
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia).
    Ghosh SK; Bhattacharjee A; Jha JK; Mondal AK; Maiti MK; Basu A; Ghosh D; Ghosh S; Sen SK
    Plant Physiol Biochem; 2007 Dec; 45(12):887-97. PubMed ID: 17977002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acyl-ACP thioesterases from Camelina sativa: cloning, enzymatic characterization and implication in seed oil fatty acid composition.
    Rodríguez-Rodríguez MF; Salas JJ; Garcés R; Martínez-Force E
    Phytochemistry; 2014 Nov; 107():7-15. PubMed ID: 25212866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds.
    Kim HJ; Silva JE; Vu HS; Mockaitis K; Nam JW; Cahoon EB
    J Exp Bot; 2015 Jul; 66(14):4251-65. PubMed ID: 25969557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola.
    Hawkins DJ; Kridl JC
    Plant J; 1998 Mar; 13(6):743-52. PubMed ID: 9681015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning, characterization, and expression analysis of acyl-acyl carrier protein (ACP)-thioesterase B from seeds of Chinese Spicehush (Lindera communis).
    Dong S; Huang J; Li Y; Zhang J; Lin S; Zhang Z
    Gene; 2014 May; 542(1):16-22. PubMed ID: 24631366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and characterization of cDNAs encoding for long-chain saturated acyl-ACP thioesterases from the developing seeds of Brassica juncea.
    Jha SS; Jha JK; Chattopadhyaya B; Basu A; Sen SK; Maiti MK
    Plant Physiol Biochem; 2010 Jun; 48(6):476-80. PubMed ID: 20356753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of novel acyl-ACP thioesterase gene ClFATB1 from Cinnamomum longepaniculatum.
    Lin N; Ai TB; Gao JH; Fan LH; Wang SH; Chen F
    Biochemistry (Mosc); 2013 Nov; 78(11):1298-303. PubMed ID: 24460945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional analyses of a saturated acyl ACP thioesterase, type B from immature seed tissue of Jatropha curcas.
    Dani KG; Hatti KS; Ravikumar P; Kush A
    Plant Biol (Stuttg); 2011 May; 13(3):453-61. PubMed ID: 21489096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth.
    Bonaventure G; Salas JJ; Pollard MR; Ohlrogge JB
    Plant Cell; 2003 Apr; 15(4):1020-33. PubMed ID: 12671095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of Acyl-ACP Thioesterases,
    Nam JW; Yeon J; Jeong J; Cho E; Kim HB; Hur Y; Lee KR; Yi H
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31284614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene network of oil accumulation reveals expression profiles in developing embryos and fatty acid composition in Upland cotton.
    Zhao Y; Wang Y; Huang Y; Cui Y; Hua J
    J Plant Physiol; 2018 Sep; 228():101-112. PubMed ID: 29886195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.