These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36361817)

  • 1. Transcriptome Analysis Reveals Putative Induction of Floral Initiation by Old Leaves in Tea-Oil Tree (
    Guo H; Zhong Q; Tian F; Zhou X; Tan X; Luo Z
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification and expression analysis of flowering-related genes reveal putative floral induction and differentiation mechanisms in tea plant (Camellia sinensis).
    Liu Y; Hao X; Lu Q; Zhang W; Zhang H; Wang L; Yang Y; Xiao B; Wang X
    Genomics; 2020 May; 112(3):2318-2326. PubMed ID: 31923617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated transcriptome and endogenous hormone analyses reveal the factors affecting the yield of Camellia oleifera.
    Zhu Y; Huo D; Zhang M; Wang G; Xiao F; Xu J; Li F; Zeng Q; Wei Y; Xu J
    BMC Genomics; 2024 Sep; 25(1):887. PubMed ID: 39304819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and functional characterization of CoFT1, a homolog of FLOWERING LOCUS T (FT) from Camellia oleifera.
    Lei H; Su S; Ma L; Wen Y; Wang X
    Gene; 2017 Aug; 626():215-226. PubMed ID: 28546125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis reveals the roles of phytohormone signaling in tea plant (Camellia sinensis L.) flower development.
    Xu X; Tao J; Xing A; Wu Z; Xu Y; Sun Y; Zhu J; Dai X; Wang Y
    BMC Plant Biol; 2022 Oct; 22(1):471. PubMed ID: 36192710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf Transcriptome and Weight Gene Co-expression Network Analysis Uncovers Genes Associated with Photosynthetic Efficiency in Camellia oleifera.
    He Z; Liu C; Wang X; Wang R; Tian Y; Chen Y
    Biochem Genet; 2021 Apr; 59(2):398-421. PubMed ID: 33040171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-depth Understanding of
    Zhou J; Lu M; Yu S; Liu Y; Yang J; Tan X
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32111089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Transcriptomic Analysis Reveals Regulatory Mechanisms of Theanine Synthesis in Tea (
    Tai Y; Ling C; Wang H; Yang L; She G; Wang C; Yu S; Chen W; Liu C; Wan X
    J Agric Food Chem; 2019 Sep; 67(36):10235-10244. PubMed ID: 31436988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea.
    Fan Z; Li J; Li X; Wu B; Wang J; Liu Z; Yin H
    Sci Rep; 2015 May; 5():9729. PubMed ID: 25978548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia (Camellia oleifera), revealing candidate genes for cold acclimation.
    Chen J; Yang X; Huang X; Duan S; Long C; Chen J; Rong J
    BMC Genomics; 2017 Feb; 18(1):211. PubMed ID: 28241790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree (
    Wu B; Ruan C; Shah AH; Li D; Li H; Ding J; Li J; Du W
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera).
    Tai Y; Wei C; Yang H; Zhang L; Chen Q; Deng W; Wei S; Zhang J; Fang C; Ho C; Wan X
    BMC Plant Biol; 2015 Aug; 15():190. PubMed ID: 26245644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated Transcriptome and Metabolome Analysis Reveals Key Metabolites Involved in
    Yang C; Wu P; Yao X; Sheng Y; Zhang C; Lin P; Wang K
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008957
    [No Abstract]   [Full Text] [Related]  

  • 14. Comprehensive analysis of the longan transcriptome reveals distinct regulatory programs during the floral transition.
    Jue D; Sang X; Liu L; Shu B; Wang Y; Liu C; Wang Y; Xie J; Shi S
    BMC Genomics; 2019 Feb; 20(1):126. PubMed ID: 30744552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic and physiological analysis reveals interplay between salicylic acid and drought stress in citrus tree floral initiation.
    Khan FS; Gan ZM; Li EQ; Ren MK; Hu CG; Zhang JZ
    Planta; 2021 Dec; 255(1):24. PubMed ID: 34928452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Camellia oleifera transcriptome reveals key pathways and hub genes involved during different photoperiods.
    Yan J; He J; Li J; Ren S; Wang Y; Zhou J; Tan X
    BMC Plant Biol; 2022 Sep; 22(1):435. PubMed ID: 36089577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental transcriptome analysis of floral transition in Rosa odorata var. gigantea.
    Guo X; Yu C; Luo L; Wan H; Zhen N; Li Y; Cheng T; Wang J; Pan H; Zhang Q
    Plant Mol Biol; 2018 May; 97(1-2):113-130. PubMed ID: 29736762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism.
    Xia EH; Jiang JJ; Huang H; Zhang LP; Zhang HB; Gao LZ
    PLoS One; 2014; 9(8):e104150. PubMed ID: 25136805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of flowering genes in Camellia perpetua by comparative transcriptome analysis.
    Yu JJ; Cui J; Huang H; Cen DC; Liu F; Xu ZF; Wang Y
    Funct Integr Genomics; 2023 Dec; 24(1):2. PubMed ID: 38066213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic Analyses of
    Wu L; Li J; Li Z; Zhang F; Tan X
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32013013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.