These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36361968)

  • 1. Four-Component Relativistic Calculations of NMR Shielding Constants of the Transition Metal Complexes-Part 2: Nitrogen-Coordinated Complexes of Cobalt.
    Samultsev DO; Semenov VA; Rusakova IL; Krivdin LB
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Four-component relativistic calculations of NMR shielding constants of the transition metal complexes. Part 1: Pentaammines of cobalt, rhodium, and iridium.
    Samultsev DO; Semenov VA; Krivdin LB
    Magn Reson Chem; 2022 Apr; 60(4):463-468. PubMed ID: 34978105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MP2 calculation of (77) Se NMR chemical shifts taking into account relativistic corrections.
    Rusakov YY; Rusakova IL; Krivdin LB
    Magn Reson Chem; 2015 Jul; 53(7):485-92. PubMed ID: 25998325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.
    Fedorov SV; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2014 Nov; 52(11):699-710. PubMed ID: 25155415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Utmost Importance of the Basis Set Choice for the Calculations of the Relativistic Corrections to NMR Shielding Constants.
    Rusakova IL; Rusakov YY
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic environmental effects in (29)Si NMR chemical shifts of halosilanes: light nucleus, heavy environment.
    Fedorov SV; Rusakov YY; Krivdin LB
    J Phys Chem A; 2015 Jun; 119(22):5778-89. PubMed ID: 25946056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the long-range relativistic effects in the
    Samultsev DO; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2017 Nov; 55(11):990-995. PubMed ID: 28557069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.
    Vícha J; Patzschke M; Marek R
    Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of intramolecular and intermolecular coordination on (31)P nuclear shielding: phosphorylated azoles.
    Chernyshev KA; Larina LI; Chirkina EA; Krivdin LB
    Magn Reson Chem; 2012 Feb; 50(2):120-7. PubMed ID: 22331772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculations of nuclear magnetic shielding constants based on the exact two-component relativistic method.
    Yoshizawa T; Hada M
    J Chem Phys; 2017 Oct; 147(15):154104. PubMed ID: 29055334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relativistic effect on 77Se NMR chemical shifts of various selenium species in the framework of zeroth-order regular approximation.
    Nakanishi W; Hayashi S; Katsura Y; Hada M
    J Phys Chem A; 2011 Aug; 115(31):8721-30. PubMed ID: 21710994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent effects in the GIAO-DFT calculations of the 15N NMR chemical shifts of azoles and azines.
    Semenov VA; Samultsev DO; Krivdin LB
    Magn Reson Chem; 2014 Nov; 52(11):686-93. PubMed ID: 25102971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of two-component and four-component approaches for calculations of spin-spin coupling constants and NMR shielding constants of transition metal cyanides.
    Wodyński A; Repiský M; Pecul M
    J Chem Phys; 2012 Jul; 137(1):014311. PubMed ID: 22779652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR shielding constants in PH3, absolute shielding scale, and the nuclear magnetic moment of 31P.
    Lantto P; Jackowski K; Makulski W; Olejniczak M; Jaszuński M
    J Phys Chem A; 2011 Sep; 115(38):10617-23. PubMed ID: 21863791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of
    Rusakova IL; Rusakov YY; Krivdin LB
    J Phys Chem A; 2017 Jun; 121(25):4793-4803. PubMed ID: 28613865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normal halogen dependence of
    Samultsev DO; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2016 Oct; 54(10):787-792. PubMed ID: 27168025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric field effects on the shielding constants of noble gases: a four-component relativistic Hartree-Fock study.
    Pecul M; Saue T; Ruud K; Rizzo A
    J Chem Phys; 2004 Aug; 121(7):3051-7. PubMed ID: 15291614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rovibrational effects on NMR shieldings in a heavy-element system: XeF2.
    Lantto P; Kangasvieri S; Vaara J
    J Chem Phys; 2012 Dec; 137(21):214309. PubMed ID: 23231233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute NMR shielding scales and nuclear spin-rotation constants in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br and (127)I).
    Demissie TB; Jaszuński M; Komorovsky S; Repisky M; Ruud K
    J Chem Phys; 2015 Oct; 143(16):164311. PubMed ID: 26520517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.