These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 36362141)
1. Bufalin Inhibits Tumorigenesis, Stemness, and Epithelial-Mesenchymal Transition in Colorectal Cancer through a C-Kit/Slug Signaling Axis. Ding L; Yang Y; Lu Q; Qu D; Chandrakesan P; Feng H; Chen H; Chen X; Liao Z; Du J; Cao Z; Weygant N Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362141 [TBL] [Abstract][Full Text] [Related]
3. Astragali Radix-Curcumae Rhizoma herb pair reduces the stemness of colorectal cancer cells through HIF-2α/β-catenin pathway. Sun R; Sun C; Yue Z; Yin G; Zhou L; Zhang S; Zhang Y; Tang D; Tan X Phytomedicine; 2024 Sep; 132():155824. PubMed ID: 38941816 [TBL] [Abstract][Full Text] [Related]
4. L1-mediated colon cancer cell metastasis does not require changes in EMT and cancer stem cell markers. Gavert N; Vivanti A; Hazin J; Brabletz T; Ben-Ze'ev A Mol Cancer Res; 2011 Jan; 9(1):14-24. PubMed ID: 21123622 [TBL] [Abstract][Full Text] [Related]
5. Oncogenic Role of SATB2 In Vitro: Regulator of Pluripotency, Self-Renewal, and Epithelial-Mesenchymal Transition in Prostate Cancer. Yu W; Srivastava R; Srivastava S; Ma Y; Shankar S; Srivastava RK Cells; 2024 Jun; 13(11):. PubMed ID: 38891096 [TBL] [Abstract][Full Text] [Related]
6. SATB2/β-catenin/TCF-LEF pathway induces cellular transformation by generating cancer stem cells in colorectal cancer. Yu W; Ma Y; Shankar S; Srivastava RK Sci Rep; 2017 Sep; 7(1):10939. PubMed ID: 28887549 [TBL] [Abstract][Full Text] [Related]
7. TRIB3 Interacts With β-Catenin and TCF4 to Increase Stem Cell Features of Colorectal Cancer Stem Cells and Tumorigenesis. Hua F; Shang S; Yang YW; Zhang HZ; Xu TL; Yu JJ; Zhou DD; Cui B; Li K; Lv XX; Zhang XW; Liu SS; Yu JM; Wang F; Zhang C; Huang B; Hu ZW Gastroenterology; 2019 Feb; 156(3):708-721.e15. PubMed ID: 30365932 [TBL] [Abstract][Full Text] [Related]
8. IGF/STAT3/NANOG/Slug Signaling Axis Simultaneously Controls Epithelial-Mesenchymal Transition and Stemness Maintenance in Colorectal Cancer. Yao C; Su L; Shan J; Zhu C; Liu L; Liu C; Xu Y; Yang Z; Bian X; Shao J; Li J; Lai M; Shen J; Qian C Stem Cells; 2016 Apr; 34(4):820-31. PubMed ID: 26840943 [TBL] [Abstract][Full Text] [Related]
9. Fas signaling induces stemness properties in colorectal cancer by regulation of Bmi1. Chen J; Wang Y; Zhuo L; Liu Z; Liu T; Li W; Cai Y; Zheng H Mol Carcinog; 2017 Oct; 56(10):2267-2278. PubMed ID: 28543447 [TBL] [Abstract][Full Text] [Related]
10. Lgr5+CD44+EpCAM+ Strictly Defines Cancer Stem Cells in Human Colorectal Cancer. Leng Z; Xia Q; Chen J; Li Y; Xu J; Zhao E; Zheng H; Ai W; Dong J Cell Physiol Biochem; 2018; 46(2):860-872. PubMed ID: 29627827 [TBL] [Abstract][Full Text] [Related]
11. LGR5 Is a Gastric Cancer Stem Cell Marker Associated with Stemness and the EMT Signature Genes NANOG, NANOGP8, PRRX1, TWIST1, and BMI1. Wang B; Chen Q; Cao Y; Ma X; Yin C; Jia Y; Zang A; Fan W PLoS One; 2016; 11(12):e0168904. PubMed ID: 28033430 [TBL] [Abstract][Full Text] [Related]
12. Downregulation of DAPK1 promotes the stemness of cancer stem cells and EMT process by activating ZEB1 in colorectal cancer. Yuan W; Ji J; Shu Y; Chen J; Liu S; Wu L; Zhou Z; Liu Z; Tang Q; Zhang X; Shu X J Mol Med (Berl); 2019 Jan; 97(1):89-102. PubMed ID: 30460377 [TBL] [Abstract][Full Text] [Related]
13. ZnAs@SiO Huang Y; Zhou B; Luo H; Mao J; Huang Y; Zhang K; Mei C; Yan Y; Jin H; Gao J; Su Z; Pang P; Li D; Shan H Theranostics; 2019; 9(15):4391-4408. PubMed ID: 31285768 [No Abstract] [Full Text] [Related]
14. miR-200c, a tumor suppressor that modulate the expression of cancer stem cells markers and epithelial-mesenchymal transition in colorectal cancer. Karimi Dermani F; Amini R; Saidijam M; Najafi R J Cell Biochem; 2018 Jul; 119(7):6288-6295. PubMed ID: 29663476 [TBL] [Abstract][Full Text] [Related]
15. Pin2 telomeric repeat factor 1-interacting telomerase inhibitor 1 (PinX1) inhibits nasopharyngeal cancer cell stemness: implication for cancer progression and therapeutic targeting. Yu C; Chen F; Wang X; Cai Z; Yang M; Zhong Q; Feng J; Li J; Shen C; Wen Z J Exp Clin Cancer Res; 2020 Feb; 39(1):31. PubMed ID: 32028978 [TBL] [Abstract][Full Text] [Related]
16. Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression. Ji Q; Liu X; Han Z; Zhou L; Sui H; Yan L; Jiang H; Ren J; Cai J; Li Q BMC Cancer; 2015 Mar; 15():97. PubMed ID: 25884904 [TBL] [Abstract][Full Text] [Related]
17. Cancer Chemopreventive Activities of Silibinin on Colorectal Cancer through Regulation of E-Cadherin/β-Catenin Pathway. Sameri S; Saidijam M; Bahreini F; Najafi R Nutr Cancer; 2021; 73(8):1389-1399. PubMed ID: 32748663 [TBL] [Abstract][Full Text] [Related]
18. KSR1- and ERK-dependent translational regulation of the epithelial-to-mesenchymal transition. Rao C; Frodyma DE; Southekal S; Svoboda RA; Black AR; Guda C; Mizutani T; Clevers H; Johnson KR; Fisher KW; Lewis RE Elife; 2021 May; 10():. PubMed ID: 33970103 [TBL] [Abstract][Full Text] [Related]
19. GRHL2 inhibits colorectal cancer progression and metastasis via oppressing epithelial-mesenchymal transition. Yang Z; Wu D; Chen Y; Min Z; Quan Y Cancer Biol Ther; 2019; 20(9):1195-1205. PubMed ID: 31063022 [TBL] [Abstract][Full Text] [Related]
20. SOX2 promotes chemoresistance, cancer stem cells properties, and epithelial-mesenchymal transition by β-catenin and Beclin1/autophagy signaling in colorectal cancer. Zhu Y; Huang S; Chen S; Chen J; Wang Z; Wang Y; Zheng H Cell Death Dis; 2021 May; 12(5):449. PubMed ID: 33953166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]