BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 36362219)

  • 1. Improving flame retardant and electromagnetic interference shielding properties of poly(lactic acid)/poly(ε-caprolactone) composites using catalytic imidazolium modified CNTs and ammonium polyphosphate.
    Wang Z; Yan T; Gao Y; Ma X; Xu P; Ding Y
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129265. PubMed ID: 38218292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hollow Superstructure In Situ Assembled by Single-Layer Janus Nanospheres toward Electromagnetic Shielding Flame-Retardant Polyurea Composites.
    Bi X; Song K; Pan YT; Barreneche C; Vahabi H; He J; Yang R
    Small; 2024 Mar; 20(12):e2307492. PubMed ID: 37946679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-friendly flame-retardant bamboo fiber/polypropylene composite based on the immobilization of halloysite nanotubes by tannic acid-Fe
    Yu X; He L; Zhang X; Bao G; Zhang R; Jin X; Qin D
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130894. PubMed ID: 38490388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realizing balanced flame retardancy and electromagnetic interference shielding in hierarchical elastomer nanocomposites.
    Chen K; Wang H; Shi Y; Liu M; Feng Y; Fu L; Song P
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):634-642. PubMed ID: 37738936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled lignin-based flame retardant hybrids carrying Cu
    Cao X; Zhou Y; Huang J; Yu B; Zhao W; Wu W
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):132141. PubMed ID: 38723809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalized lignin nanoparticles assembled with MXene reinforced polypropylene with favorable UV-aging resistance, electromagnetic shielding effects and superior fire-safety.
    Liu Y; Zhao X; Liu Z; Sun B; Liu X; Zhao R; Liu B; Sun Z; Men Y; Hu W; Shao ZB
    Int J Biol Macromol; 2024 Apr; 265(Pt 2):130957. PubMed ID: 38499121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on preparation of modified Graphene Oxide and flame retardancy of polystyrene composite microspheres.
    Wang Y; Qing Y; Sun Y; Zhu M; Dong S
    Des Monomers Polym; 2020; 23(1):1-15. PubMed ID: 32127789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-in-one bio-derived poly(L-lactic acid)-based composite with fire-resistance and smoke-suppression performance.
    Wang C; Zhang X; Nadzir MM; Uyama H; Tang W; Fu D; Xie Z; Wang C; Wang J; Yang J
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132610. PubMed ID: 38788876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalization of Carbon Nanotubes in Polystyrene and Properties of Their Composites: A Review.
    Li H; Wang G; Wu Y; Jiang N; Niu K
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and Sound Insulation Performance of Polystyrene Building Flame Retardant and Thermal Insulation Building Materials.
    Guo Q
    Int J Anal Chem; 2022; 2022():6444367. PubMed ID: 35782586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flame Retardation of Natural Rubber: Strategy and Recent Progress.
    Wan L; Deng C; Zhao ZY; Chen H; Wang YZ
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32059374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus/Bromine Synergism Improved the Flame Retardancy of Polyethylene Terephthalate Foams.
    Du J; Zheng J; Xin C; He Y
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat-triggered shape recovery, EMI shielding and flame retardant: A novel cellulose/M(OH)(OCH
    Dong X; Dai GW; Xie L; Li DL; Sun Z; Liu S
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):130270. PubMed ID: 38423423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalization of MXene Nanosheets for Polystyrene towards High Thermal Stability and Flame Retardant Properties.
    Si JY; Tawiah B; Sun WL; Lin B; Wang C; Yuen ACY; Yu B; Li A; Yang W; Lu HD; Chan QN; Yeoh GH
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31163659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Evaluation of Hybrid Composites of Chemical Fuel and Multi-walled Carbon Nanotubes in the Study of Thermopower Waves.
    Hwang H; Yeo T; Cho Y; Shin D; Choi W
    J Vis Exp; 2015 Apr; (98):. PubMed ID: 25938793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel modified nano-alumina composite sol for potential application in forest firefighting.
    Du W; Yan M; Yin C; Zhang Z
    RSC Adv; 2023 Nov; 13(48):33820-33825. PubMed ID: 38020004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effects of core-shell structured piperazine pyrophosphate microcapsules on fire safety and mechanical property in styrenic thermoplastic elastomer.
    Zhu M; Jia P; Yang G; Song L; Hu Y; Wang B
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1112-1122. PubMed ID: 37783011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Experimental Verification of Inorganic Electromagnetic Pulse Shielding Paint for Building Interiors Using Carbon-Based Materials.
    Jang KP
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic Function between Phosphorus-Containing Flame Retardant and Multi-Walled Carbon Nanotubes towards Fire Safe Polystyrene Composites with Enhanced Electromagnetic Interference Shielding.
    Huang R; Gao C; Shi Y; Fu L; Feng Y; Shui W
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362219
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.