These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36362261)

  • 21. Functionalized single graphene sheets derived from splitting graphite oxide.
    Schniepp HC; Li JL; McAllister MJ; Sai H; Herrera-Alonso M; Adamson DH; Prud'homme RK; Car R; Saville DA; Aksay IA
    J Phys Chem B; 2006 May; 110(17):8535-9. PubMed ID: 16640401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions.
    De S; King PJ; Lotya M; O'Neill A; Doherty EM; Hernandez Y; Duesberg GS; Coleman JN
    Small; 2010 Feb; 6(3):458-64. PubMed ID: 19859943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite.
    Sevilla M; Ferrero GA; Fuertes AB
    Chemistry; 2016 Nov; 22(48):17351-17358. PubMed ID: 27775199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microwave surface impedance measurements on reduced graphene oxide.
    Hao L; Mattevi C; Gallop J; Goniszewski S; Xiao Y; Cohen L; Klein N
    Nanotechnology; 2012 Jul; 23(28):285706. PubMed ID: 22728562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear photoluminescence imaging of isotropic and liquid crystalline dispersions of graphene oxide.
    Senyuk B; Behabtu N; Pacheco BG; Lee T; Ceriotti G; Tour JM; Pasquali M; Smalyukh II
    ACS Nano; 2012 Sep; 6(9):8060-6. PubMed ID: 22881340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurements of the Electrical Conductivity of Monolayer Graphene Flakes Using Conductive Atomic Force Microscopy.
    Lim S; Park H; Yamamoto G; Lee C; Suk JW
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34685022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Processable aqueous dispersions of graphene nanosheets.
    Li D; Müller MB; Gilje S; Kaner RB; Wallace GG
    Nat Nanotechnol; 2008 Feb; 3(2):101-5. PubMed ID: 18654470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes.
    Munuera JM; Paredes JI; Villar-Rodil S; Ayán-Varela M; Martínez-Alonso A; Tascón JM
    Nanoscale; 2016 Feb; 8(5):2982-98. PubMed ID: 26782137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptide-Driven Exfoliation and Dispersion Mechanisms of Graphene in Aqueous Media.
    Jin R; Vuković F; Walsh TR
    J Phys Chem Lett; 2021 Dec; 12(49):11945-11950. PubMed ID: 34881890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing the Dynamics of Water Confined between Graphene Oxide Surfaces with Janus Interfaces: A Molecular Dynamics Study.
    M R; Ayappa KG
    J Phys Chem B; 2019 Apr; 123(13):2978-2993. PubMed ID: 30860840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.
    Li H; Zeng XC
    ACS Nano; 2012 Mar; 6(3):2401-9. PubMed ID: 22356158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manipulation and Quantification of Graphene Oxide Flake Size: Photoluminescence and Cytotoxicity.
    Coleman BR; Knight T; Gies V; Jakubek ZJ; Zou S
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28911-28921. PubMed ID: 28776377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity.
    Bhattacharya S; Dhar P; Das SK; Ganguly R; Webster TJ; Nayar S
    Int J Nanomedicine; 2014; 9():1287-98. PubMed ID: 24648728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide.
    Liu Y; Zeng J; Han D; Wu K; Yu B; Chai S; Chen F; Fu Q
    Nanotechnology; 2018 May; 29(18):185601. PubMed ID: 29443010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles.
    Ihiawakrim D; Ersen O; Melin F; Hellwig P; Janowska I; Begin D; Baaziz W; Begin-Colin S; Pham-Huu C; Baati R
    Nanoscale; 2013 Oct; 5(19):9073-80. PubMed ID: 23900422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets.
    Lin X; Shen X; Zheng Q; Yousefi N; Ye L; Mai YW; Kim JK
    ACS Nano; 2012 Dec; 6(12):10708-19. PubMed ID: 23171230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Principles governing control of aggregation and dispersion of aqueous graphene oxide.
    Suter JL; Coveney PV
    Sci Rep; 2021 Nov; 11(1):22460. PubMed ID: 34789770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scalable enhancement of graphene oxide properties by thermally driven phase transformation.
    Kumar PV; Bardhan NM; Tongay S; Wu J; Belcher AM; Grossman JC
    Nat Chem; 2014 Feb; 6(2):151-8. PubMed ID: 24451592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing.
    Chen L; Shi G; Shen J; Peng B; Zhang B; Wang Y; Bian F; Wang J; Li D; Qian Z; Xu G; Liu G; Zeng J; Zhang L; Yang Y; Zhou G; Wu M; Jin W; Li J; Fang H
    Nature; 2017 Oct; 550(7676):380-383. PubMed ID: 28992630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon Papers and Aerogels Based on Graphene Layers and Chitosan: Direct Preparation from High Surface Area Graphite.
    Barbera V; Guerra S; Brambilla L; Maggio M; Serafini A; Conzatti L; Vitale A; Galimberti M
    Biomacromolecules; 2017 Dec; 18(12):3978-3991. PubMed ID: 29131607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.