These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36362279)

  • 1. RNADSN: Transfer-Learning 5-Methyluridine (m
    Li Z; Mao J; Huang D; Song B; Meng J
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. m5UPred: A Web Server for the Prediction of RNA 5-Methyluridine Sites from Sequences.
    Jiang J; Song B; Tang Y; Chen K; Wei Z; Meng J
    Mol Ther Nucleic Acids; 2020 Dec; 22():742-747. PubMed ID: 33230471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iRNA-m5U: A sequence based predictor for identifying 5-methyluridine modification sites in Saccharomyces cerevisiae.
    Feng P; Chen W
    Methods; 2022 Jul; 203():28-31. PubMed ID: 33882361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. m5U-SVM: identification of RNA 5-methyluridine modification sites based on multi-view features of physicochemical features and distributed representation.
    Ao C; Ye X; Sakurai T; Zou Q; Yu L
    BMC Biol; 2023 Apr; 21(1):93. PubMed ID: 37095510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. tRNA-DL: A Deep Learning Approach to Improve tRNAscan-SE Prediction Results.
    Gao X; Wei Z; Hakonarson H
    Hum Hered; 2018; 83(3):163-172. PubMed ID: 30685762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. m
    Pereira M; Ribeiro DR; Pinheiro MM; Ferreira M; Kellner S; Soares AR
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DLm6Am: A Deep-Learning-Based Tool for Identifying N6,2'-O-Dimethyladenosine Sites in RNA Sequences.
    Luo Z; Su W; Lou L; Qiu W; Xiao X; Xu Z
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and biochemical studies on the function of 5-methyluridine in the transfer ribonucleic acid of Escherichia coli.
    Björk GR; Neidhardt FC
    J Bacteriol; 1975 Oct; 124(1):99-111. PubMed ID: 1100618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EDLm
    Zhang L; Li G; Li X; Wang H; Chen S; Liu H
    BMC Bioinformatics; 2021 May; 22(1):288. PubMed ID: 34051729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth rate-dependent regulation of transfer ribonucleic acid (5-methyluridine) methyltransferase in Escherichia coli B/r.
    Ny T; Björk GR
    J Bacteriol; 1980 Jan; 141(1):67-73. PubMed ID: 6153386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination of mRNA and tRNA methylations by TRMT10A.
    Ontiveros RJ; Shen H; Stoute J; Yanas A; Cui Y; Zhang Y; Liu KF
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7782-7791. PubMed ID: 32213595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of binding property of RNA-binding proteins using multi-sized filters and multi-modal deep convolutional neural network.
    Chung T; Kim D
    PLoS One; 2019; 14(4):e0216257. PubMed ID: 31026297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tRNA recognition mechanism of folate/FAD-dependent tRNA methyltransferase (TrmFO).
    Yamagami R; Yamashita K; Nishimasu H; Tomikawa C; Ochi A; Iwashita C; Hirata A; Ishitani R; Nureki O; Hori H
    J Biol Chem; 2012 Dec; 287(51):42480-94. PubMed ID: 23095745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. tRNA Modification Detection Using Graphene Nanopores: A Simulation Study.
    Onanuga K; Begley TJ; Chen AA; Ranganathan SV
    Biomolecules; 2017 Aug; 7(3):. PubMed ID: 32962315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics.
    Choi J; Ieong KW; Demirci H; Chen J; Petrov A; Prabhakar A; O'Leary SE; Dominissini D; Rechavi G; Soltis SM; Ehrenberg M; Puglisi JD
    Nat Struct Mol Biol; 2016 Feb; 23(2):110-5. PubMed ID: 26751643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding property of C5 uridine modification at the wobble position of tRNA anticodon.
    Kurata S; Ohtsuki T; Wada T; Kirino Y; Takai K; Saigo K; Watanabe K; Suzuki T
    Nucleic Acids Res Suppl; 2003; (3):245-6. PubMed ID: 14510472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria--evolutionary implications.
    Urbonavicius J; Skouloubris S; Myllykallio H; Grosjean H
    Nucleic Acids Res; 2005; 33(13):3955-64. PubMed ID: 16027442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.