These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 36362290)

  • 21. Enhancement of Na(+) uptake currents, time-dependent inward-rectifying K(+) channel currents, and K(+) channel transcripts by K(+) starvation in wheat root cells.
    Buschmann PH; Vaidyanathan R; Gassmann W; Schroeder JI
    Plant Physiol; 2000 Apr; 122(4):1387-97. PubMed ID: 10759535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiology and proteomic analysis reveals root, stem and leaf responses to potassium deficiency stress in alligator weed.
    Li L; Lyu C; Huang L; Chen Q; Zhuo W; Wang X; Lu Y; Zeng F; Lu L
    Sci Rep; 2019 Nov; 9(1):17366. PubMed ID: 31758026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Root and leaf metabolite profiles analysis reveals the adaptive strategies to low potassium stress in barley.
    Zeng J; Quan X; He X; Cai S; Ye Z; Chen G; Zhang G
    BMC Plant Biol; 2018 Sep; 18(1):187. PubMed ID: 30200885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-Omics Analyses Reveal the Molecular Mechanisms Underlying the Adaptation of Wheat (
    Zhao Y; Sun R; Liu H; Liu X; Xu K; Xiao K; Zhang S; Yang X; Xue C
    Front Plant Sci; 2020; 11():588994. PubMed ID: 33123186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis.
    Qi Z; Hampton CR; Shin R; Barkla BJ; White PJ; Schachtman DP
    J Exp Bot; 2008; 59(3):595-607. PubMed ID: 18281719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress.
    Ge P; Hao P; Cao M; Guo G; Lv D; Subburaj S; Li X; Yan X; Xiao J; Ma W; Yan Y
    Proteomics; 2013 Oct; 13(20):3046-58. PubMed ID: 23929510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress.
    Jiang Q; Li X; Niu F; Sun X; Hu Z; Zhang H
    Proteomics; 2017 Apr; 17(8):. PubMed ID: 28191739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological Analysis and Proteome Quantification of Alligator Weed Stems in Response to Potassium Deficiency Stress.
    Li LQ; Lyu CC; Li JH; Tong Z; Lu YF; Wang XY; Ni S; Yang SM; Zeng FC; Lu LM
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30626112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supportive role of the Na
    Gao LW; Yang SL; Wei SW; Huang DF; Zhang YD
    Plant Mol Biol; 2020 Jul; 103(4-5):561-580. PubMed ID: 32405802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress.
    Yang Y; Ma L; Zeng H; Chen LY; Zheng Y; Li CX; Yang ZP; Wu N; Mu X; Dai CY; Guan HL; Cui XM; Liu Y
    Gene; 2018 Oct; 675():301-311. PubMed ID: 30180969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional characterization of a wheat NHX antiporter gene TaNHX2 that encodes a K(+)/H(+) exchanger.
    Xu Y; Zhou Y; Hong S; Xia Z; Cui D; Guo J; Xu H; Jiang X
    PLoS One; 2013; 8(11):e78098. PubMed ID: 24223765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Greater morphological and primary metabolic adaptations in roots contribute to phosphate-deficiency tolerance in the bread wheat cultivar Kenong199.
    Zheng L; Karim MR; Hu YG; Shen R; Lan P
    BMC Plant Biol; 2021 Aug; 21(1):381. PubMed ID: 34412589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum).
    Liu H; Sultan MA; Liu XL; Zhang J; Yu F; Zhao HX
    PLoS One; 2015; 10(4):e0121852. PubMed ID: 25859656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High and Low Affinity Urea Root Uptake: Involvement of NIP5;1.
    Yang H; Menz J; Häussermann I; Benz M; Fujiwara T; Ludewig U
    Plant Cell Physiol; 2015 Aug; 56(8):1588-97. PubMed ID: 25957355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CHX14 is a plasma membrane K-efflux transporter that regulates K(+) redistribution in Arabidopsis thaliana.
    Zhao J; Li P; Motes CM; Park S; Hirschi KD
    Plant Cell Environ; 2015 Nov; 38(11):2223-38. PubMed ID: 25754420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of V-type H
    Zhou Y; Li Y; Qi X; Liu R; Dong J; Jing W; Guo M; Si Q; Xu Z; Li L; Wang C; Cheng X; Ma Y; Chen M
    Sci Rep; 2020 Mar; 10(1):5020. PubMed ID: 32193452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential Root Foraging Strategy of Wheat (
    Ruan L; Xin X; Zhang J; Zhao B; Cheng H; Zhang C; Ma D; Chen L
    Front Plant Sci; 2018; 9():1755. PubMed ID: 30538717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome Analysis Unravels Key Factors Involved in Response to Potassium Deficiency and Feedback Regulation of K
    Yang D; Li F; Yi F; Eneji AE; Tian X; Li Z
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33808570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of potassium deficiency-responsive transcriptomes in low potassium susceptible and tolerant wheat (Triticum aestivum L.).
    Ruan L; Zhang J; Xin X; Zhang C; Ma D; Chen L; Zhao B
    Sci Rep; 2015 May; 5():10090. PubMed ID: 25985414
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Transcription Factor MYB59 Regulates K
    Du XQ; Wang FL; Li H; Jing S; Yu M; Li J; Wu WH; Kudla J; Wang Y
    Plant Cell; 2019 Mar; 31(3):699-714. PubMed ID: 30760559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.