These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 36362298)
21. Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease. Gamboa JL; Billings FT; Bojanowski MT; Gilliam LA; Yu C; Roshanravan B; Roberts LJ; Himmelfarb J; Ikizler TA; Brown NJ Physiol Rep; 2016 May; 4(9):. PubMed ID: 27162261 [TBL] [Abstract][Full Text] [Related]
22. Reduced skeletal muscle function is associated with decreased fiber cross-sectional area in the Cy/+ rat model of progressive kidney disease. Organ JM; Srisuwananukorn A; Price P; Joll JE; Biro KC; Rupert JE; Chen NX; Avin KG; Moe SM; Allen MR Nephrol Dial Transplant; 2016 Feb; 31(2):223-30. PubMed ID: 26442903 [TBL] [Abstract][Full Text] [Related]
23. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sato E; Mori T; Mishima E; Suzuki A; Sugawara S; Kurasawa N; Saigusa D; Miura D; Morikawa-Ichinose T; Saito R; Oba-Yabana I; Oe Y; Kisu K; Naganuma E; Koizumi K; Mokudai T; Niwano Y; Kudo T; Suzuki C; Takahashi N; Sato H; Abe T; Niwa T; Ito S Sci Rep; 2016 Nov; 6():36618. PubMed ID: 27830716 [TBL] [Abstract][Full Text] [Related]
24. Human HDL subclasses modulate energy metabolism in skeletal muscle cells. Lund J; Lähteenmäki E; Eklund T; Bakke HG; Thoresen GH; Pirinen E; Jauhiainen M; Rustan AC; Lehti M J Lipid Res; 2024 Jan; 65(1):100481. PubMed ID: 38008260 [TBL] [Abstract][Full Text] [Related]
25. New insights into muscle function in chronic kidney disease and metabolic acidosis. Chalupsky M; Goodson DA; Gamboa JL; Roshanravan B Curr Opin Nephrol Hypertens; 2021 May; 30(3):369-376. PubMed ID: 33767065 [TBL] [Abstract][Full Text] [Related]
27. Skeletal muscle metabolic responses to physical activity are muscle type specific in a rat model of chronic kidney disease. Avin KG; Hughes MC; Chen NX; Srinivasan S; O'Neill KD; Evan AP; Bacallao RL; Schulte ML; Moorthi RN; Gisch DL; Perry CGR; Moe SM; O'Connell TM Sci Rep; 2021 May; 11(1):9788. PubMed ID: 33963215 [TBL] [Abstract][Full Text] [Related]
28. TLR13 contributes to skeletal muscle atrophy by increasing insulin resistance in chronic kidney disease. Gu L; Wang Z; Zhang Y; Zhu N; Li J; Yang M; Wang L; Rong S Cell Prolif; 2022 Mar; 55(3):e13181. PubMed ID: 35088922 [TBL] [Abstract][Full Text] [Related]
29. Acute effect of fatty acids on metabolism and mitochondrial coupling in skeletal muscle. Hirabara SM; Silveira LR; Alberici LC; Leandro CV; Lambertucci RH; Polimeno GC; Cury Boaventura MF; Procopio J; Vercesi AE; Curi R Biochim Biophys Acta; 2006 Jan; 1757(1):57-66. PubMed ID: 16375848 [TBL] [Abstract][Full Text] [Related]
30. Uremia Impedes Skeletal Myocyte Myomixer Expression and Fusogenic Activity: Implication for Uremic Sarcopenia. Higashihara T; Odawara M; Nishi H; Sugasawa T; Suzuki Y; Kametaka S; Inagi R; Nangaku M Am J Pathol; 2024 May; 194(5):759-771. PubMed ID: 38637109 [TBL] [Abstract][Full Text] [Related]
31. Obesity causes renal mitochondrial dysfunction and energy imbalance and accelerates chronic kidney disease in mice. Andres-Hernando A; Lanaspa MA; Kuwabara M; Orlicky DJ; Cicerchi C; Bales E; Garcia GE; Roncal-Jimenez CA; Sato Y; Johnson RJ Am J Physiol Renal Physiol; 2019 Oct; 317(4):F941-F948. PubMed ID: 31411075 [TBL] [Abstract][Full Text] [Related]
32. Retinoblastoma Protein Knockdown Favors Oxidative Metabolism and Glucose and Fatty Acid Disposal in Muscle Cells. Petrov PD; Ribot J; López-Mejía IC; Fajas L; Palou A; Bonet ML J Cell Physiol; 2016 Mar; 231(3):708-18. PubMed ID: 26241807 [TBL] [Abstract][Full Text] [Related]
33. AST-120 ameliorates lowered exercise capacity and mitochondrial biogenesis in the skeletal muscle from mice with chronic kidney disease via reducing oxidative stress. Nishikawa M; Ishimori N; Takada S; Saito A; Kadoguchi T; Furihata T; Fukushima A; Matsushima S; Yokota T; Kinugawa S; Tsutsui H Nephrol Dial Transplant; 2015 Jun; 30(6):934-42. PubMed ID: 25878055 [TBL] [Abstract][Full Text] [Related]
34. Reduced skeletal muscle expression of mitochondrial-derived peptides humanin and MOTS-C and Nrf2 in chronic kidney disease. Liu C; Gidlund EK; Witasp A; Qureshi AR; Söderberg M; Thorell A; Nader GA; Barany P; Stenvinkel P; von Walden F Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1122-F1131. PubMed ID: 31432706 [TBL] [Abstract][Full Text] [Related]
35. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice. Zabielski P; Lanza IR; Gopala S; Heppelmann CJ; Bergen HR; Dasari S; Nair KS Diabetes; 2016 Mar; 65(3):561-73. PubMed ID: 26718503 [TBL] [Abstract][Full Text] [Related]
36. Impairment of mitochondrial bioenergetics and permeability transition induction caused by major long-chain fatty acids accumulating in VLCAD deficiency in skeletal muscle as potential pathomechanisms of myopathy. Cecatto C; Amaral AU; Roginski AC; Castilho RF; Wajner M Toxicol In Vitro; 2020 Feb; 62():104665. PubMed ID: 31629068 [TBL] [Abstract][Full Text] [Related]
37. SELENON (SEPN1) protects skeletal muscle from saturated fatty acid-induced ER stress and insulin resistance. Varone E; Pozzer D; Di Modica S; Chernorudskiy A; Nogara L; Baraldo M; Cinquanta M; Fumagalli S; Villar-Quiles RN; De Simoni MG; Blaauw B; Ferreiro A; Zito E Redox Biol; 2019 Jun; 24():101176. PubMed ID: 30921636 [TBL] [Abstract][Full Text] [Related]
38. Metabolic adaptations in skeletal muscle overexpressing GLUT4: effects on muscle and physical activity. Tsao TS; Li J; Chang KS; Stenbit AE; Galuska D; Anderson JE; Zierath JR; McCarter RJ; Charron MJ FASEB J; 2001 Apr; 15(6):958-69. PubMed ID: 11292656 [TBL] [Abstract][Full Text] [Related]