BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 36362718)

  • 1. Pathways of Angiogenic and Inflammatory Cytokines in Multiple Myeloma: Role in Plasma Cell Clonal Expansion and Drug Resistance.
    Melaccio A; Reale A; Saltarella I; Desantis V; Lamanuzzi A; Cicco S; Frassanito MA; Vacca A; Ria R
    J Clin Med; 2022 Nov; 11(21):. PubMed ID: 36362718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Good Cop, Bad Cop: Profiling the Immune Landscape in Multiple Myeloma.
    Sharma NS; Choudhary B
    Biomolecules; 2023 Nov; 13(11):. PubMed ID: 38002311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone marrow angiogenesis and progression in multiple myeloma.
    Ria R; Reale A; De Luisi A; Ferrucci A; Moschetta M; Vacca A
    Am J Blood Res; 2011; 1(1):76-89. PubMed ID: 22432068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of the bone marrow microenvironment on multiple myeloma (Review).
    Hou J; Wei R; Qian J; Wang R; Fan Z; Gu C; Yang Y
    Oncol Rep; 2019 Oct; 42(4):1272-1282. PubMed ID: 31524246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone Marrow Stromal Cells-Induced Drug Resistance in Multiple Myeloma.
    Ria R; Vacca A
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication between bone marrow mesenchymal stem cells and multiple myeloma cells: Impact on disease progression.
    García-Sánchez D; González-González A; Alfonso-Fernández A; Del Dujo-Gutiérrez M; Pérez-Campo FM
    World J Stem Cells; 2023 May; 15(5):421-437. PubMed ID: 37342223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone marrow microenvironment in multiple myeloma progression.
    Manier S; Sacco A; Leleu X; Ghobrial IM; Roccaro AM
    J Biomed Biotechnol; 2012; 2012():157496. PubMed ID: 23093834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Marrow Microenvironment in the Growth and Development of Malignant Plasma Cells in Multiple Myeloma.
    Giannakoulas N; Ntanasis-Stathopoulos I; Terpos E
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33923357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiogenesis in multiple myeloma.
    Jakob C; Sterz J; Zavrski I; Heider U; Kleeberg L; Fleissner C; Kaiser M; Sezer O
    Eur J Cancer; 2006 Jul; 42(11):1581-90. PubMed ID: 16797965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel therapies targeting the myeloma cell and its bone marrow microenvironment.
    Hideshima T; Chauhan D; Podar K; Schlossman RL; Richardson P; Anderson KC
    Semin Oncol; 2001 Dec; 28(6):607-12. PubMed ID: 11740818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple myeloma bone marrow niche.
    Basak GW; Srivastava AS; Malhotra R; Carrier E
    Curr Pharm Biotechnol; 2009 Apr; 10(3):345-6. PubMed ID: 19355944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal cytokine production by bone marrow stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells.
    Zdzisińska B; Bojarska-Junak A; Dmoszyńska A; Kandefer-Szerszeń M
    Arch Immunol Ther Exp (Warsz); 2008; 56(3):207-21. PubMed ID: 18512025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytokine-Mediated Dysregulation of Signaling Pathways in the Pathogenesis of Multiple Myeloma.
    Akhtar S; Ali TA; Faiyaz A; Khan OS; Raza SS; Kulinski M; Omri HE; Bhat AA; Uddin S
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32679860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1.
    Tai YT; Cho SF; Anderson KC
    Front Immunol; 2018; 9():1822. PubMed ID: 30147691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the Microenvironment for Treating Multiple Myeloma.
    Neumeister P; Schulz E; Pansy K; Szmyra M; Deutsch AJ
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35886976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CXCL12gamma chemokine immobilized by heparan sulfate on stromal niche cells controls adhesion and mediates drug resistance in multiple myeloma.
    Ren Z; Lantermans H; Kuil A; Kraan W; Arenzana-Seisdedos F; Kersten MJ; Spaargaren M; Pals ST
    J Hematol Oncol; 2021 Jan; 14(1):11. PubMed ID: 33436043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jagged Ligands Enhance the Pro-Angiogenic Activity of Multiple Myeloma Cells.
    Palano MT; Giannandrea D; Platonova N; Gaudenzi G; Falleni M; Tosi D; Lesma E; Citro V; Colombo M; Saltarella I; Ria R; Amodio N; Taiana E; Neri A; Vitale G; Chiaramonte R
    Cancers (Basel); 2020 Sep; 12(9):. PubMed ID: 32932949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophages in multiple myeloma: key roles and therapeutic strategies.
    Opperman KS; Vandyke K; Psaltis PJ; Noll JE; Zannettino ACW
    Cancer Metastasis Rev; 2021 Mar; 40(1):273-284. PubMed ID: 33404860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic changes underlying drug resistance in the multiple myeloma tumor microenvironment.
    Matamala Montoya M; van Slobbe GJJ; Chang JC; Zaal EA; Berkers CR
    Front Oncol; 2023; 13():1155621. PubMed ID: 37091139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pentraxin 3 (PTX3) inhibits plasma cell/stromal cell cross-talk in the bone marrow of multiple myeloma patients.
    Basile A; Moschetta M; Ditonno P; Ria R; Marech I; De Luisi A; Berardi S; Frassanito MA; Angelucci E; Derudas D; Specchia G; Curci P; Pavone V; Rossini B; Ribatti D; Bottazzi B; Mantovani A; Presta M; Dammacco F; Vacca A
    J Pathol; 2013 Jan; 229(1):87-98. PubMed ID: 22847671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.