BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36363023)

  • 21. Predicting the Compressive Strength of the Cement-Fly Ash-Slag Ternary Concrete Using the Firefly Algorithm (FA) and Random Forest (RF) Hybrid Machine-Learning Method.
    Huang J; Sabri MMS; Ulrikh DV; Ahmad M; Alsaffar KAM
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature.
    Ahmad A; Ostrowski KA; Maślak M; Farooq F; Mehmood I; Nafees A
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compressive Strength Estimation of Steel-Fiber-Reinforced Concrete and Raw Material Interactions Using Advanced Algorithms.
    Khan K; Ahmad W; Amin MN; Ahmad A; Nazar S; Alabdullah AA
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mass GGBFS Concrete Mixed with Recycled Aggregates as Alkali-Active Substances: Workability, Temperature History and Strength.
    Huo Y; Huang J; Han X; Sun H; Liu T; Zhou J; Yang Y
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ensemble Machine-Learning-Based Prediction Models for the Compressive Strength of Recycled Powder Mortar.
    Fei Z; Liang S; Cai Y; Shen Y
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decision tree models for the estimation of geo-polymer concrete compressive strength.
    Zhou J; Su Z; Hosseini S; Tian Q; Lu Y; Luo H; Xu X; Chen C; Huang J
    Math Biosci Eng; 2024 Jan; 21(1):1413-1444. PubMed ID: 38303471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative analysis of various machine learning algorithms to predict strength properties of sustainable green concrete containing waste foundry sand.
    Javed MF; Khan M; Fawad M; Alabduljabbar H; Najeh T; Gamil Y
    Sci Rep; 2024 Jun; 14(1):14617. PubMed ID: 38918460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concrete Strength Prediction Using Different Machine Learning Processes: Effect of Slag, Fly Ash and Superplasticizer.
    Qi C; Huang B; Wu M; Wang K; Yang S; Li G
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using Machine Learning Algorithms to Estimate the Compressive Property of High Strength Fiber Reinforced Concrete.
    Dai L; Wu X; Zhou M; Ahmad W; Ali M; Sabri MMS; Salmi A; Ewais DYZ
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction on Compressive and Split Tensile Strengths of GGBFS/FA Based GPC.
    Lee S; Shin S
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31847257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep learning-based prediction of compressive strength of eco-friendly geopolymer concrete.
    Tanyildizi H
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):41246-41266. PubMed ID: 38844634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intelligent Design of Construction Materials: A Comparative Study of AI Approaches for Predicting the Strength of Concrete with Blast Furnace Slag.
    Wu X; Zhu F; Zhou M; Sabri MMS; Huang J
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms.
    Ahmad A; Ahmad W; Chaiyasarn K; Ostrowski KA; Aslam F; Zajdel P; Joyklad P
    Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-Tuned Machine Learning Approach for Predicting the Compressive Strength of High-Performance Concrete.
    Al-Shamiri AK; Yuan TF; Kim AJH
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32106394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Indirect prediction of graphene nanoplatelets-reinforced cementitious composites compressive strength by using machine learning approaches.
    Fawad M; Alabduljabbar H; Farooq F; Najeh T; Gamil Y; Ahmed B
    Sci Rep; 2024 Jun; 14(1):14252. PubMed ID: 38902314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Learned Prediction of Compressive Strength of GGBFS Concrete Using Hybrid Artificial Neural Network Models.
    Han IJ; Yuan TF; Lee JY; Yoon YS; Kim JH
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP.
    Nafees A; Javed MF; Khan S; Nazir K; Farooq F; Aslam F; Musarat MA; Vatin NI
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Research on prediction of compressive strength of fly ash and slag mixed concrete based on machine learning.
    Wang M; Kang J; Liu W; Su J; Li M
    PLoS One; 2022; 17(12):e0279293. PubMed ID: 36574382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of Mechanical Properties of Fly-Ash/Slag-Based Geopolymer Concrete Using Ensemble and Non-Ensemble Machine-Learning Techniques.
    Amin MN; Khan K; Javed MF; Aslam F; Qadir MG; Faraz MI
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of Soft-Computing Methods to Evaluate the Compressive Strength of Self-Compacting Concrete.
    Amin MN; Al-Hashem MN; Ahmad A; Khan K; Ahmad W; Qadir MG; Imran M; Al-Ahmad QMS
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.