These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 36363056)
1. Ru Single Atoms on One-Dimensional CF@g-C Yang Y; Zhang S; Gu L; Hao S Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363056 [TBL] [Abstract][Full Text] [Related]
2. Amine-promoted Ru Yang Y; Yang F; Wang H; Zhou B; Hao S J Colloid Interface Sci; 2021 Jan; 581(Pt A):167-176. PubMed ID: 32771728 [TBL] [Abstract][Full Text] [Related]
3. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions. Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298 [TBL] [Abstract][Full Text] [Related]
4. Stable yolk-structured catalysts towards aqueous levulinic acid hydrogenation within a single Ru nanoparticle anchored inside the mesoporous shell of hollow carbon spheres. Yang Y; Zhang S; Gu L; Shao S; Li W; Zeng D; Yang F; Hao S J Colloid Interface Sci; 2020 Sep; 576():394-403. PubMed ID: 32460100 [TBL] [Abstract][Full Text] [Related]
5. Ru/g-C Cao J; Han F; Wang L; Huang X; Cao Y; He P; Yang H; Chen J; Li H RSC Adv; 2020 Apr; 10(28):16515-16525. PubMed ID: 35498848 [TBL] [Abstract][Full Text] [Related]
6. Sequential hydrogenation of nitroaromatics to alicyclic amines Wu J; Wang L; Xu S; Cao Y; Han Z; Li H RSC Adv; 2023 Jan; 13(3):2024-2035. PubMed ID: 36712606 [TBL] [Abstract][Full Text] [Related]
7. 3D Oxide-Derived Ru Catalyst for Ultra-Efficient Hydrogenation of Levulinic Acid to γ-Valerolactone. Wang S; Zhuang Z; Chen X; Wang Y; Li X; Yang M; Wu Y; Peng Q; Chen C; Li Y Small; 2024 Feb; 20(7):e2306227. PubMed ID: 37806748 [TBL] [Abstract][Full Text] [Related]
8. Direct Synthesis of Atomically Dispersed Palladium Atoms Supported on Graphitic Carbon Nitride for Efficient Selective Hydrogenation Reactions. Hu F; Leng L; Zhang M; Chen W; Yu Y; Wang J; Horton JH; Li Z ACS Appl Mater Interfaces; 2020 Dec; 12(48):54146-54154. PubMed ID: 33211492 [TBL] [Abstract][Full Text] [Related]
9. Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed γ-valerolactone production. Villa A; Schiavoni M; Chan-Thaw CE; Fulvio PF; Mayes RT; Dai S; More KL; Veith GM; Prati L ChemSusChem; 2015 Aug; 8(15):2520-8. PubMed ID: 26089180 [TBL] [Abstract][Full Text] [Related]
10. An interfacial synergism effect of Pd-g-C Li L; Deng X; He J; Zhang H; Li L; Zhu L Dalton Trans; 2023 Dec; 52(47):17974-17980. PubMed ID: 37982402 [TBL] [Abstract][Full Text] [Related]
11. Robust Ruthenium Catalysts Supported on Mesoporous Cyclodextrin-Templated TiO Decarpigny C; Noël S; Addad A; Ponchel A; Monflier E; Bleta R Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33572104 [TBL] [Abstract][Full Text] [Related]
12. Hierarchical Porous Carbon Nitride-Crumpled Nanosheet-Embedded Copper Single Atoms: An Efficient Catalyst for Carbon Monoxide Oxidation. Eid K; Sliem MH; Al-Ejji M; Abdullah AM; Harfouche M; Varma RS ACS Appl Mater Interfaces; 2022 Sep; 14(36):40749-40760. PubMed ID: 36037411 [TBL] [Abstract][Full Text] [Related]
13. Conversion of levulinic acid to γ-valerolactone over Ru/Al Wang R; Chen L; Zhang X; Zhang Q; Li Y; Wang C; Ma L RSC Adv; 2018 Dec; 8(71):40989-40995. PubMed ID: 35557899 [TBL] [Abstract][Full Text] [Related]
14. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984 [TBL] [Abstract][Full Text] [Related]
15. Production of γ-valerolactone from levulinic acid over a Ru/C catalyst using formic acid as the sole hydrogen source. Feng J; Gu X; Xue Y; Han Y; Lu X Sci Total Environ; 2018 Aug; 633():426-432. PubMed ID: 29579653 [TBL] [Abstract][Full Text] [Related]
16. Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation in the Conversion of Biomass Molecule by the Ru Tian S; Wang Z; Gong W; Chen W; Feng Q; Xu Q; Chen C; Chen C; Peng Q; Gu L; Zhao H; Hu P; Wang D; Li Y J Am Chem Soc; 2018 Sep; 140(36):11161-11164. PubMed ID: 30160108 [TBL] [Abstract][Full Text] [Related]
17. Preparation of Ru/Graphene using Glucose as Carbon Source and Hydrogenation of Levulinic Acid to γ-Valerolactone. Wu L; Song J; Zhou B; Wu T; Jiang T; Han B Chem Asian J; 2016 Oct; 11(19):2792-2796. PubMed ID: 27305341 [TBL] [Abstract][Full Text] [Related]
18. Highly dispersive Ru confined in porous ultrathin g-C Yin Y; Liu M; Shi L; Zhang S; Hirani RAK; Zhu C; Chen C; Yuan A; Duan X; Wang S; Sun H J Hazard Mater; 2022 Aug; 435():128939. PubMed ID: 35483264 [TBL] [Abstract][Full Text] [Related]
19. Influence of Sulfuric Acid on the Performance of Ruthenium-based Catalysts in the Liquid-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone. Ftouni J; Genuino HC; Muñoz-Murillo A; Bruijnincx PCA; Weckhuysen BM ChemSusChem; 2017 Jul; 10(14):2891-2896. PubMed ID: 28603841 [TBL] [Abstract][Full Text] [Related]
20. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts. Popova M; Trendafilova I; Oykova M; Mitrev Y; Shestakova P; Mihályi MR; Szegedi Á Molecules; 2022 Aug; 27(17):. PubMed ID: 36080151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]