BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36363161)

  • 21. Experimental and Numerical Investigation of Mechanical Properties of Lightweight Concretes (LWCs) with Various Aggregates.
    Kurpińska M; Ferenc T
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32781762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Healing in Cementitious Materials-A Review.
    Van Tittelboom K; De Belie N
    Materials (Basel); 2013 May; 6(6):2182-2217. PubMed ID: 28809268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alkaliphiles: The Emerging Biological Tools Enhancing Concrete Durability.
    Mamo G; Mattiasson B
    Adv Biochem Eng Biotechnol; 2020; 172():293-342. PubMed ID: 31041481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Setup of Extruded Cementitious Hollow Tubes as Containing/Releasing Devices in Self-Healing Systems.
    Formia A; Terranova S; Antonaci P; Pugno NM; Tulliani JM
    Materials (Basel); 2015 Apr; 8(4):1897-1923. PubMed ID: 28788038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microstructural Characterization of Alkali-Activated Composites of Lightweight Aggregates (LWAs) Embedded in Alkali-Activated Foam (AAF) Matrices.
    Traven K; Wisniewski W; Češnovar M; Ducman V
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental Prognostication of Ultra-High-Performance Lightweight Hybrid Fiber-Reinforced Concrete by Using Sintered Fly Ash Aggregate, Palm Oil Shell Aggregate, and Supplementary Cementitious Materials.
    Behera D; Liu KY; Gopalakrishnan D
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete.
    Lo TY; Cui HZ; Li ZG
    Waste Manag; 2004; 24(4):333-8. PubMed ID: 15081059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of lightweight aggregates from stone cutting sludge, plastic wastes and sepiolite rejections for agricultural and environmental purposes.
    Moreno-Maroto JM; González-Corrochano B; Alonso-Azcárate J; Rodríguez L; Acosta A
    J Environ Manage; 2017 Sep; 200():229-242. PubMed ID: 28582746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect heating dwell time has on the retention of heavy metals in the structure of lightweight aggregates manufactured from wastes.
    González-Corrochano B; Alonso-Azcárate J; Rodríguez L; Pérez Lorenzo A; Fernández Torío M; Tejado Ramos JJ; Corvinos MD; Muro C
    Environ Technol; 2018 Oct; 39(19):2511-2523. PubMed ID: 28737078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Durability Properties of Ultra-High Performance Lightweight Concrete (UHPLC) with Expanded Glass.
    Umbach C; Wetzel A; Middendorf B
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prolonging Bacterial Viability in Biological Concrete: Coated Expanded Clay Particles.
    Jakubovskis R; Jankutė A; Guobužaitė S; Boris R; Urbonavičius J
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34064142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes.
    Kockal NU; Ozturan T
    J Hazard Mater; 2010 Jul; 179(1-3):954-65. PubMed ID: 20399557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving the Self-Healing of Cementitious Materials with a Hydrogel System.
    Wang H; Habibi M; Marzouki R; Majdi A; Shariati M; Denic N; Zakić A; Khorami M; Khadimallah MA; Ebid AAK
    Gels; 2022 Apr; 8(5):. PubMed ID: 35621576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Durability of Mortar Containing Alkali Activated Fly Ash-Based Lightweight Aggregate.
    Risdanareni P; Van den Heede P; Wang J; De Belie N
    Materials (Basel); 2021 Jul; 14(13):. PubMed ID: 34279312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review of biomineralization in healing concrete: Mechanism, biodiversity, and application.
    Zhang J; Deng J; He Y; Wu J; Simões MF; Liu B; Li Y; Zhang S; Antunes A
    Sci Total Environ; 2024 Mar; 917():170445. PubMed ID: 38296086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of eco-efficient lightweight self-compacting concrete with high volume of recycled EPS waste materials.
    Hilal N; Hamah Sor N; Faraj RH
    Environ Sci Pollut Res Int; 2021 Sep; 28(36):50028-50051. PubMed ID: 33945091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure.
    Khushnood RA; Qureshi ZA; Shaheen N; Ali S
    Sci Total Environ; 2020 Feb; 703():135007. PubMed ID: 31744694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks.
    Kurpinska M; Kułak L
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31234516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Corrosion Resistance of Reinforced Lightweight Aggregate Concrete in Strong Brine Environments.
    Chen HJ; Chen YC; Tang CW; Lin XF
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Bacteria-Based Self-Healing Cementitious Composite for Application in Low-Temperature Marine Environments.
    Palin D; Wiktor V; Jonkers HM
    Biomimetics (Basel); 2017 Jul; 2(3):. PubMed ID: 31105176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.