These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36363214)

  • 1. Effect of Reducing Agent on Characteristics and Antibacterial Activity of Copper-Containing Particles in Textile Materials.
    Ivanauskas R; Ancutienė I; Milašienė D; Ivanauskas A; Bronušienė A
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial and Antifungal Properties of Polyester, Polylactide, and Cotton Nonwovens and Fabrics, by Means of Stable Aqueous Dispersions Containing Copper Silicate and Some Metal Oxides.
    Chruściel JJ; Olczyk J; Kudzin MH; Kaczmarek P; Król P; Tarzyńska N
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial Activity of Copper Particles Embedded in Knitted Fabrics.
    Ivanauskas R; Bronusiene A; Ivanauskas A; Šarkinas A; Ancutiene I
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parsimonious methodology for synthesis of silver and copper functionalized cellulose.
    Patch D; O'Connor N; Meira D; Scott J; Koch I; Weber K
    Cellulose (Lond); 2023; 30(6):3455-3472. PubMed ID: 36994235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Co-Surfactants on Properties and Bactericidal Activity of Cu
    Xuan Thang D; Thuy Chinh N; Thi Binh Minh N; Hoang Nghia T; Hoang T
    ChemistryOpen; 2024 Aug; 13(8):e202300274. PubMed ID: 38426697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrafibrillar Dispersion of Cuprous Oxide (Cu
    Hillyer MB; Nam S; Condon BD
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibacterial Bio-Nanocomposite Textile Material Produced from Natural Resources.
    Marković D; Zille A; Ribeiro AI; Mikučioniene D; Simončič B; Tomšič B; Radetić M
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile fabrication of cytocompatible polyester fiber composite incorporated via photocatalytic nano copper ferrite/myristic-lauric fatty acids coating with antibacterial and hydrophobic performances.
    Bashiri Rezaie A; Montazer M; Mahmoudi Rad M
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109888. PubMed ID: 31499937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the Possibilities of Wool Fiber Surface Modification with Copper Selenide.
    Belukhina O; Milasiene D; Ivanauskas R
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33801679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy.
    Díaz-Visurraga J; Daza C; Pozo C; Becerra A; von Plessing C; García A
    Int J Nanomedicine; 2012; 7():3597-612. PubMed ID: 22848180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, Characterization, and Antibacterial Properties of Cu-Fibreboards.
    Aleksandrov L; Rangelova N; Lazarova-Zdravkova N; Georgieva N; Dragnevska M; Nenkova S
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Cu Modified Textile Structures on Antibacterial and Antiviral Protection.
    Cieślak M; Kowalczyk D; Krzyżowska M; Janicka M; Witczak E; Kamińska I
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Copper Selenide Modification on the Conductivity of PA6, PA66, PAN, and PES Fibers.
    Milasiene D; Belukhina O; Ivanauskas R
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application.
    Thekkae Padil VV; Černík M
    Int J Nanomedicine; 2013; 8():889-98. PubMed ID: 23467397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic activity of CuO/Cu(OH)
    Saratale RG; Ghodake GS; Shinde SK; Cho SK; Saratale GD; Pugazhendhi A; Bharagava RN
    J Environ Manage; 2018 Oct; 223():1086-1097. PubMed ID: 29735295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial investigation of titanium-copper alloys using luminescent Staphylococcus epidermidis in a direct contact test.
    Fowler L; Janson O; Engqvist H; Norgren S; Öhman-Mägi C
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():707-714. PubMed ID: 30678959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive and Antibacterial Glass Powders Doped with Copper by Ion-Exchange in Aqueous Solutions.
    Miola M; Verné E
    Materials (Basel); 2016 May; 9(6):. PubMed ID: 28773530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of high and low pathogenic avian influenza virus H5 subtypes by copper ions incorporated in zeolite-textile materials.
    Imai K; Ogawa H; Bui VN; Inoue H; Fukuda J; Ohba M; Yamamoto Y; Nakamura K
    Antiviral Res; 2012 Feb; 93(2):225-233. PubMed ID: 22179064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cuprous Oxide- or Copper-Coated Jute Stick Pieces at an Air-Water Interface for Prevention of Aerial Contamination in Potable Water.
    Rai R; Gummadi SN; Chand DK
    ACS Omega; 2019 Dec; 4(27):22514-22520. PubMed ID: 31909334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medical equipment antiseptic processes using the atmospheric plasma sprayed copper coatings.
    Goudarzi M; Saviz S; Ghoranneviss M; Salar Elahi A
    J Xray Sci Technol; 2017; 25(3):479-485. PubMed ID: 27911352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.