These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36363238)

  • 1. Effect of Cathode Physical Properties on the Preparation of Fe
    Li H; Fu Y; Liang J; Yang Y
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Influence of CaO on the Electrochemical Reduction of Fe
    Li H; Song L; Liang J; Huo D; Cao W; Liu C
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Pyrolysis Concerted Formation of Si/C Hybrids during Molten Salt Electrolysis of SiO
    Weng W; Zeng C; Xiao W
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9156-9163. PubMed ID: 30789694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2.
    Wu T; Xiao W; Jin X; Liu C; Wang D; Chen GZ
    Phys Chem Chem Phys; 2008 Apr; 10(13):1809-18. PubMed ID: 18350186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous colloidal metal network formation driven by molten salt electrolysis.
    Natsui S; Sudo T; Kaneko T; Tonya K; Nakajima D; Kikuchi T; Suzuki RO
    Sci Rep; 2018 Aug; 8(1):13114. PubMed ID: 30166574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molten Salt Synthesis of High-Performance, Nanostructured La
    Zuo X; Chen Z; Guan C; Chen K; Song S; Xiao G; Pang Y; Wang JQ
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32423168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the electrodeposition of uranium in chloride molten salt.
    Wu P; Wang L; Wang J; Luo J; Lu Y; Song X; Liu J; Qin Y; Hou L; Ma J
    RSC Adv; 2024 Feb; 14(10):7031-7039. PubMed ID: 38414996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the Behavior of Electrochemical Extraction of Cobalt from Spent Lithium Cobalt Oxide Cathode Materials.
    Li H; Li H; Li C; Liang J; Yan H; Xu Z
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The electrochemical reduction processes of solid compounds in high temperature molten salts.
    Xiao W; Wang D
    Chem Soc Rev; 2014 May; 43(10):3215-28. PubMed ID: 24535552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in a SiO
    Gao Y; Yang C; Zhang C; Qin Q; Chen GZ
    Phys Chem Chem Phys; 2017 Jun; 19(24):15876-15890. PubMed ID: 28589201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries.
    Wang Y; Wang Y; Wang F
    Nanoscale Res Lett; 2014; 9(1):197. PubMed ID: 24855459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure and Mechanical Properties of Nanocrystalline Al-Zn-Mg-Cu Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering.
    Cheng J; Cai Q; Zhao B; Yang S; Chen F; Li B
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30995788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Processing Parameters on the Microstructure and Mechanical Properties of Nanoscaled WC-10Co Cemented Carbide.
    Wang Y; Xiang F; Yuan X; Yang B; Wang F; Li Y
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Mechanism of Molten Salt Electrolysis from TiO
    Meng X; Zhao H; Bi S; Ju Z; Yang Z; Yang Y; Li H; Liang J
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode.
    Yuan Y; Li W; Chen H; Wang Z; Jin X; Chen GZ
    Faraday Discuss; 2016 Aug; 190():85-96. PubMed ID: 27203663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Mechanism of Recovery of Nickel Metal from Waste Lithium Ion Batteries by Molten Salt Electrolysis.
    Li H; Fu Y; Liang J; Li C; Wang J; Yan H; Cai Z
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrolyzed Ni(OH)
    Ji H; Ben L; Yu H; Qiao R; Zhao W; Huang X
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):50965-50974. PubMed ID: 34664953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnesium production by molten salt electrolysis with liquid tin cathode and multiple effect distillation.
    Telgerafchi AE; Rutherford M; Espinosa G; McArthur D; Masse N; Perrin B; Tang Z; Powell AC
    Front Chem; 2023; 11():1192202. PubMed ID: 37465359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Conductive Garnet-Type Electrolytes: Access to Li
    Badami P; Weller JM; Wahab A; Redhammer G; Ladenstein L; Rettenwander D; Wilkening M; Chan CK; Kannan ANM
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48580-48590. PubMed ID: 33113638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.
    Hu L; Song Y; Jiao S; Liu Y; Ge J; Jiao H; Zhu J; Wang J; Zhu H; Fray DJ
    ChemSusChem; 2016 Mar; 9(6):588-94. PubMed ID: 26871684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.