These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36363256)

  • 41. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cerium oxide NPs mitigate the amyloid formation of α-synuclein and associated cytotoxicity.
    Zand Z; Khaki PA; Salihi A; Sharifi M; Qadir Nanakali NM; Alasady AA; Aziz FM; Shahpasand K; Hasan A; Falahati M
    Int J Nanomedicine; 2019; 14():6989-7000. PubMed ID: 31695369
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state NMR.
    Martial B; Lefèvre T; Auger M
    Biophys Rev; 2018 Aug; 10(4):1133-1149. PubMed ID: 29855812
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation and Characterization of Zn
    Xue X; Zhang J; Chen L; Zhao C; Wang L; Chang L
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4403-4408. PubMed ID: 29442795
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SERS tags derived from silver nanoparticles and aryl diazonium salts for cell Raman imaging.
    Li D; Nizard P; Onidas D; Lamouri A; Pinson J; Mahouche-Chergui S; Aubertin K; Gazeau F; Luo Y; Mangeney C
    Nanoscale; 2022 Jan; 14(4):1452-1458. PubMed ID: 35018945
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Influence of Pathogenic Mutations in α-Synuclein on Biophysical and Structural Characteristics of Amyloid Fibrils.
    Ruggeri FS; Flagmeier P; Kumita JR; Meisl G; Chirgadze DY; Bongiovanni MN; Knowles TPJ; Dobson CM
    ACS Nano; 2020 May; 14(5):5213-5222. PubMed ID: 32159944
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel synthesis and structural analysis of zinc oxide nanoparticles for the non enzymatic glucose biosensor.
    Dayakar T; Venkateswara Rao K; Bikshalu K; Rajendar V; Park SH
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1472-1479. PubMed ID: 28415439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct Nanospectroscopic Verification of the Amyloid Aggregation Pathway.
    Lipiec E; Perez-Guaita D; Kaderli J; Wood BR; Zenobi R
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8519-8524. PubMed ID: 29749066
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Green Wastes Mediated Zinc Oxide Nanoparticles: Synthesis, Characterization and Electrochemical Studies.
    Okpara EC; Fayemi OE; Sherif EM; Junaedi H; Ebenso EE
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32977619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tip-Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from Aβ
    Bonhommeau S; Talaga D; Hunel J; Cullin C; Lecomte S
    Angew Chem Int Ed Engl; 2017 Feb; 56(7):1771-1774. PubMed ID: 28071842
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Zinc oxide nanoparticle and bovine serum albumin interaction and nanoparticles influence on cytotoxicity in vitro.
    Žūkienė R; Snitka V
    Colloids Surf B Biointerfaces; 2015 Nov; 135():316-323. PubMed ID: 26275837
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications.
    Fouda A; El-Din Hassan S; Salem SS; Shaheen TI
    Microb Pathog; 2018 Dec; 125():252-261. PubMed ID: 30240818
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tin oxide nanoparticles trigger the formation of amyloid β oligomers/protofibrils and underlying neurotoxicity as a marker of Alzheimer's diseases.
    Jaragh-Alhadad LA; Falahati M
    Int J Biol Macromol; 2022 Apr; 204():154-160. PubMed ID: 35124024
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multimodal Characterization of Resin Embedded and Sliced Polymer Nanoparticles by Means of Tip-Enhanced Raman Spectroscopy and Force-Distance Curve Based Atomic Force Microscopy.
    Höppener C; Schacher FH; Deckert V
    Small; 2020 Apr; 16(17):e1907418. PubMed ID: 32227438
    [TBL] [Abstract][Full Text] [Related]  

  • 55. (De)stabilization of Alpha-Synuclein Fibrillary Aggregation by Charged and Uncharged Surfactants.
    Loureiro JA; Andrade S; Goderis L; Gomez-Gutierrez R; Soto C; Morales R; Pereira MC
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830391
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cross-seeding of alpha-synuclein aggregation by amyloid fibrils of food proteins.
    Vaneyck J; Segers-Nolten I; Broersen K; Claessens MMAE
    J Biol Chem; 2021; 296():100358. PubMed ID: 33539920
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Larvicidal and antibacterial activity of aqueous leaf extract of Peepal (
    Soni N; Dhiman RC
    Parasite Epidemiol Control; 2020 Nov; 11():e00166. PubMed ID: 32885057
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review.
    Kurouski D; Van Duyne RP; Lednev IK
    Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synergistic biocidal effects of metal oxide nanoparticles-assisted ultrasound irradiation: Antimicrobial sonodynamic therapy against Streptococcus mutans biofilms.
    Pourhajibagher M; Bahador A
    Photodiagnosis Photodyn Ther; 2021 Sep; 35():102432. PubMed ID: 34246828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.