These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36363281)

  • 1. A CNT-Toughened Strategy for In-Situ Repair of Aircraft Composite Structures.
    Yang T; Chu S; Liu B; Xu F; Wang B; Wu C
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximizing Interlaminar Fracture Toughness in Bidirectional GFRP through Controlled CNT Heterogeneous Toughening.
    Zhao H; Zhang Y; Ou Y; Wu L; Li J; Yao X; Yang X; Mao D
    Polymers (Basel); 2024 Apr; 16(7):. PubMed ID: 38611269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Mode I and Mode II Interlaminar Fracture Toughness in CNT-Enhanced CFRP under Various Temperature and Loading Rates.
    Yenigun B; Chaudhry MS; Gkouti E; Czekanski A
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Interlaminar Fracture Toughness and Impact Performance of Carbon Fiber/Epoxy Laminated Composite by Using Thermoplastic Fibers.
    Chen L; Wu LW; Jiang Q; Tian D; Zhong Z; Wang Y; Fu HJ
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31527461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlaminar Fracture Behavior of Carbon Fiber/Polyimide Composites Toughened by Interleaving Thermoplastic Polyimide Fiber Veils.
    Lan B; Liu Y; Mo S; He M; Zhai L; Fan L
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on Mode I Fracture Toughness of Woven Carbon Fiber-Reinforced Polymer Composites Incorporating Nanomaterials.
    Truong GT; Tran HV; Choi KK
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33126614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical and Experimental Analysis of the Mode I Interlaminar Fracture Toughness in Multidirectional 3D-Printed Thermoplastic Composites Reinforced with Continuous Carbon Fiber.
    Santos JD; Guerrero JM; Blanco N; Fajardo JI; Paltán CA
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free-Standing CNT Film for Interlaminar Toughening: Insight into Infiltration and Thickness Effects.
    Fu A; Ou Y; Wu L; Zhang Y; Weng Y; Mao D
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Particle Size on Toughening Mechanisms of Layered Silicates in CFRP.
    Hutschreuther J; Kunz R; Breu J; Altstädt V
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Thermo-Electro and Mechanical Properties Evaluation of Helical Multiwall Carbon Nanotube-Carbon Fiber/Epoxy Composite Laminates.
    Ali A; Andriyana A; Hassan SBA; Ang BC
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33947012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlaminar Mechanical Properties and Toughening Mechanism of Highly Thermally Stable Composite Modified by Polyacrylonitrile Nanofiber Films.
    Ma Y; Zhuang Y; Li C; Luo C; Shen X
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Properties of the Carbon Nanotube Modified Epoxy-Carbon Fiber Unidirectional Prepreg Laminates.
    Bakis G; Wendel JF; Zeiler R; Aksit A; Häublein M; Demleitner M; Benra J; Forero S; Schütz W; Altstädt V
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33801511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Analytical Model of Interlaminar Fracture of Polymer Composite Reinforced by Carbon Fibres Grafted with Carbon Nanotubes.
    Xu F; Liu HY; Du X
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Strength and Toughness of Carbon Woven Fabric Composites with Functionalized MWCNTs.
    Soliman E; Kandil U; Taha MR
    Materials (Basel); 2014 Jun; 7(6):4640-4657. PubMed ID: 28788698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrothermally Self-Healing Delamination Cracks in Carbon/Epoxy Composites Using Sandwich and Tough Carbon Nanotube/Copolymer Interleaves.
    Ouyang Q; Liu L; Wu Z
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro.
    Khalid P; Hussain MA; Rekha PD; Arun AB
    Hum Exp Toxicol; 2015 May; 34(5):548-56. PubMed ID: 25233896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interlaminar Toughening of Epoxy Carbon Fiber Reinforced Laminates: Soluble Versus Non-Soluble Veils.
    Ognibene G; Latteri A; Mannino S; Saitta L; Recca G; Scarpa F; Cicala G
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31212609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode II Interfacial Fracture Toughness of Multi-Walled Carbon Nanotubes Reinforced Nanocomposite Film on Aluminum Substrate.
    Her SC; Chien PC
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32397129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Residual Stresses and Fracture Toughness of Glass/Carbon Epoxy Composites.
    Umarfarooq MA; Gouda PSS; Banapurmath NR; Kittur MI; Khan T; Badruddin IA; Kamangar S; Hussien M
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cohesive Zone Modeling of the Interface Fracture in Full-Thermoplastic Hybrid Composites for Lightweight Application.
    Giusti R; Lucchetta G
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.