These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36363388)

  • 1. Gaussian Process for Machine Learning-Based Fatigue Life Prediction Model under Multiaxial Stress-Strain Conditions.
    Karolczuk A; Skibicki D; Pejkowski Ł
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28792487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torsional whole-life transformation ratchetting under pure-torsional and non-proportional multiaxial cyclic loadings of NiTi SMA at human-body temperature: Experimental observations and life-prediction model.
    Song D; Kang G; Yu C; Kan Q; Zhang C
    J Mech Behav Biomed Mater; 2019 Jun; 94():267-278. PubMed ID: 30933835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel model for low-cycle multiaxial fatigue life prediction based on the critical plane-damage parameter.
    Liu J; Lv X; Wei Y; Pan X; Jin Y; Wang Y
    Sci Prog; 2020; 103(3):36850420936220. PubMed ID: 32757872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Life-Dependent Material Parameters to Fatigue Life Prediction under Multiaxial and Non-Zero Mean Loading.
    Kluger K; Karolczuk A; Derda S
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32235605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A physics-guided modelling method of artificial neural network for multiaxial fatigue life prediction under irregular loading.
    Zhou T; Sun X; Chen X
    Philos Trans A Math Phys Eng Sci; 2023 Nov; 381(2260):20220392. PubMed ID: 37742707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Method for Predicting the Creep Rupture Life of Small-Sample Materials Based on Parametric Models and Machine Learning Models.
    Zhang X; Yao J; Wu Y; Liu X; Wang C; Liu H
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials.
    Tobajas R; Elduque D; Ibarz E; Javierre C; Gracia L
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32456238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning dataset for metal multiaxial fatigue life prediction.
    Chen S; Bai Y; Zhou X; Yang A
    Sci Data; 2024 Sep; 11(1):1027. PubMed ID: 39300134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.
    Runciman A; Xu D; Pelton AR; Ritchie RO
    Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study.
    Fatihhi SJ; Harun MN; Abdul Kadir MR; Abdullah J; Kamarul T; Öchsner A; Syahrom A
    Ann Biomed Eng; 2015 Oct; 43(10):2487-502. PubMed ID: 25828397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiaxial fatigue modeling for Nitinol shape memory alloys under in-phase loading.
    Mahtabi MJ; Shamsaei N
    J Mech Behav Biomed Mater; 2015 Mar; 55():236-249. PubMed ID: 26594783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress fracture of bone under physiological multiaxial cyclic loading: Activity-based predictive models.
    George WT; Debopadhaya S; Stephen SJ; Botti BA; Burr DB; Vashishth D
    Bone; 2024 Oct; 190():117279. PubMed ID: 39393595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Method for Fatigue Strength Prediction of Nickel-Based Superalloy with Various Influencing Factors.
    Guo Y; Rui SS; Xu W; Sun C
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Cyclic Stress-Strain Property of Steels by Crystal Plasticity Simulations and Machine Learning.
    Miyazawa Y; Briffod F; Shiraiwa T; Enoki M
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine learning study on the fatigue crack path of short crack on an α titanium alloy.
    Shen Z; Lv G; Fu D; Long Y; Zhang Z; Tan K; Li L; Wang Q; Wang C
    Philos Trans A Math Phys Eng Sci; 2023 Nov; 381(2260):20220391. PubMed ID: 37742704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creep-Fatigue Experiment and Life Prediction Study of Piston 2A80 Aluminum Alloy.
    Dong Y; Liu J; Liu Y; Li H; Zhang X; Hu X
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33805819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain.
    Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue Life of Aluminum Alloys Based on Shear and Hydrostatic Strain.
    Łagoda T; Głowacka K; Kurek A
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.