These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36363414)

  • 1. Effect of Severe Plastic Deformation and Post-Deformation Heat Treatment on the Microstructure and Superelastic Properties of Ti-50.8 at.% Ni Alloy.
    Lee TJ; Kim WJ
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural and Texture Evolution in Pure Niobium during Severe Plastic Deformation by Differential Speed Rolling.
    Park SY; Kim WJ
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of biodegradable Mg-Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg₂Ca phase by high-ratio differential speed rolling.
    Seong JW; Kim WJ
    Acta Biomater; 2015 Jan; 11():531-42. PubMed ID: 25246310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy.
    Fu J; Kim HY; Miyazaki S
    J Mech Behav Biomed Mater; 2017 Jan; 65():716-723. PubMed ID: 27750162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructural Evolution and Electrochemical Properties of HRDSR AZ61-
    Kim MG; Kim WJ; Kim GH; Cho KK; Han JH; Kim HS
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6081-6089. PubMed ID: 29677747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Grain Refinement and Dispersion of Particles and Reinforcements on Mechanical Properties of Metals and Metal Matrix Composites through High-Ratio Differential Speed Rolling.
    Bahmani A; Kim WJ
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32962132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy.
    Choi HY; Kim WJ
    J Mech Behav Biomed Mater; 2015 Nov; 51():291-301. PubMed ID: 26275491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of severe grain refinement on the damage tolerance of a superelastic NiTi shape memory alloy.
    Leitner T; Sabirov I; Pippan R; Hohenwarter A
    J Mech Behav Biomed Mater; 2017 Jul; 71():337-348. PubMed ID: 28399494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape memory characteristics and superelasticity of Ti-Ni-Cu alloy ribbons with nano Ti2Ni particles.
    Nam TH; Yu CA; Nam JM; Kim HG; Kim YW
    J Nanosci Nanotechnol; 2008 Feb; 8(2):722-7. PubMed ID: 18464397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Cold Drawing and Annealing in Thermomechanical Treatment Route on the Microstructure and Functional Properties of Superelastic Ti-Zr-Nb Alloy.
    Kudryashova A; Lukashevich K; Derkach M; Strakhov O; Dubinskiy S; Andreev V; Prokoshkin S; Sheremetyev V
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring deformation and superelastic behaviors of beta-type Ti-Nb-Mn-Sn alloys.
    Jawed SF; Liu YJ; Wang JC; Rabadia CD; Wang LQ; Li YH; Zhang XH; Zhang LC
    J Mech Behav Biomed Mater; 2020 Oct; 110():103867. PubMed ID: 32957184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Influences of Process Annealing Temperature on Microstructure and Mechanical Properties of near β High Strength Titanium Alloy Sheet.
    Du Z; Ma Y; Liu F; Xu N; Chen Y; Wang X; Chen Y; Gong T; Xu D
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31067798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of thermomechanical treatment on the superelasticity of Ti-7.5Nb-4Mo-2Sn biomedical alloy.
    Zhang DC; Tan CG; Tang DM; Zhang Y; Lin JG; Wen CE
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():76-86. PubMed ID: 25280682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment.
    Shayesteh Moghaddam N; Saedi S; Amerinatanzi A; Hinojos A; Ramazani A; Kundin J; Mills MJ; Karaca H; Elahinia M
    Sci Rep; 2019 Jan; 9(1):41. PubMed ID: 30631084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thickness reduction effect in obtaining ultrafine-grained microstructure from oxygen-free copper using high-ratio differential speed rolling.
    Kim WJ
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1472-5. PubMed ID: 21456215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.
    Wang L; Wang C; Zhang LC; Chen L; Lu W; Zhang D
    Sci Rep; 2016 Apr; 6():23905. PubMed ID: 27049025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superelasticity Evaluation of the Biocompatible Ti-17Nb-6Ta Alloy.
    Keshtta A; Gepreel MA
    J Healthc Eng; 2019; 2019():8353409. PubMed ID: 30728927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy.
    Tahara M; Okano N; Inamura T; Hosoda H
    Sci Rep; 2017 Nov; 7(1):15715. PubMed ID: 29146921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing and damping capacity of NiTi foams with laminated pore architecture.
    Zhang X; Wei L
    J Mech Behav Biomed Mater; 2019 Aug; 96():108-117. PubMed ID: 31035061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superelasticity, corrosion resistance and biocompatibility of the Ti-19Zr-10Nb-1Fe alloy.
    Xue P; Li Y; Li K; Zhang D; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():179-86. PubMed ID: 25746260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.