These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36363624)
1. Experimental Investigation on the Anode Flow Field Design for an Air-Cooled Open-Cathode Proton Exchange Membrane Fuel Cell. Deng Z; Li B; Xing S; Zhao C; Wang H Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363624 [TBL] [Abstract][Full Text] [Related]
2. Influence of Cathode Channel Parameters and Fan Duty Ratio on Low Power Forced-Convection Open-Cathode Proton Exchange Membrane Fuel Cell Stack. Zhou J; Deng H; Xue R; Zhang Y Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837987 [TBL] [Abstract][Full Text] [Related]
3. Dataset and measurements from a current density sensor during experimental testing of dynamic load cycling for a parallel-serpentine design of a proton exchange membrane fuel cell. Toharias B; Suárez C; Iranzo A; Salva M; Rosa F Data Brief; 2024 Jun; 54():110392. PubMed ID: 38632982 [TBL] [Abstract][Full Text] [Related]
4. Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs - Review. Marappan M; Palaniswamy K; Velumani T; Chul KB; Velayutham R; Shivakumar P; Sundaram S Chem Rec; 2021 Apr; 21(4):663-714. PubMed ID: 33543591 [TBL] [Abstract][Full Text] [Related]
5. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels. Lee PH; Hwang SS Sensors (Basel); 2009; 9(11):9104-21. PubMed ID: 22291556 [TBL] [Abstract][Full Text] [Related]
6. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field. Lee PH; Han SS; Hwang SS Sensors (Basel); 2008 Mar; 8(3):1475-1487. PubMed ID: 27879774 [TBL] [Abstract][Full Text] [Related]
7. Design and Simulation of Air-Breathing Micro Direct Methanol Fuel Cells with Different Anode Flow Fields. Deng H; Zhou J; Zhang Y Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33801312 [TBL] [Abstract][Full Text] [Related]
8. Experimental and Numerical Study of Proton Exchange Membrane Fuel Cells with a Novel Compound Flow Field. Wang Y; Wang L; Ji X; Zhou Y; Wu M ACS Omega; 2021 Aug; 6(34):21892-21899. PubMed ID: 34497884 [TBL] [Abstract][Full Text] [Related]
9. Alternating Flow Field Design Improves the Performance of Proton Exchange Membrane Fuel Cells. Qin Z; Huo W; Bao Z; Tongsh C; Wang B; Du Q; Jiao K Adv Sci (Weinh); 2023 Feb; 10(4):e2205305. PubMed ID: 36470593 [TBL] [Abstract][Full Text] [Related]
10. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system. Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975 [TBL] [Abstract][Full Text] [Related]
11. Modifying the Catalyst Layer Using Polyvinyl Alcohol for the Performance Improvement of Proton Exchange Membrane Fuel Cells under Low Humidity Operations. Jienkulsawad P; Chen YS; Arpornwichanop A Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32825148 [TBL] [Abstract][Full Text] [Related]
12. Dynamics Management of Intermediate Water Storage in an Air-Breathing Single-Cell Membrane Electrode Assembly. Kumar A; Schechter A; Avrahami I Membranes (Basel); 2023 Dec; 14(1):. PubMed ID: 38248694 [TBL] [Abstract][Full Text] [Related]
13. Analysis on the design and property of flow field plates of innovative direct methanol fuel cell. Chang H; Kao MJ; Chen CH; Kuo CG; Lee KY J Nanosci Nanotechnol; 2014 Oct; 14(10):8066-9. PubMed ID: 25942924 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional multiphysics coupling numerical simulation of a proton conductor solid oxide fuel cell based on multi-defect transport. Li Q; Sun X; Shen L; Li G Phys Chem Chem Phys; 2023 Mar; 25(10):7154-7169. PubMed ID: 36810664 [TBL] [Abstract][Full Text] [Related]
15. Investigating the Effect of the Compensation Flow Fields on the Performance and Thermal Stress Distribution of a Typical Fuel Cell. Zhao Y; Hu C; Xu C; Cho HM; Chen D ACS Omega; 2024 Apr; 9(15):17458-17466. PubMed ID: 38645310 [TBL] [Abstract][Full Text] [Related]
16. Analyzing Temperature Distribution, Mass Transport, and Cell Performance in PEM Fuel Cells with Emphasis on GDL Face Permeability and Thermal Contact Resistance Parameters. Binyamin B; Lim O ACS Omega; 2024 Jan; 9(1):1516-1534. PubMed ID: 38222648 [TBL] [Abstract][Full Text] [Related]
17. Advanced Reversal Tolerant Anode in Proton Exchange Membrane Fuel Cells: Study on the Attenuation Mechanism during Fuel Starvation. Zhou X; Yang Y; Li B; Zhang C ACS Appl Mater Interfaces; 2021 Jan; 13(2):2455-2461. PubMed ID: 33400863 [TBL] [Abstract][Full Text] [Related]
18. [Enhanced Performance of Rolled Membrane Electrode Assembly by Adding Cation Exchange Resin to Anode in Microbial Fuel Cells]. Mei Z; Zhang Z; Wang X Huan Jing Ke Xue; 2015 Nov; 36(11):4311-8. PubMed ID: 26911023 [TBL] [Abstract][Full Text] [Related]
19. Charge-Transfer Modeling and Polarization DRT Analysis of Proton Ceramics Fuel Cells Based on Mixed Conductive Electrolyte with the Modified Anode-Electrolyte Interface. Wang X; Ma Z; Zhang T; Kang J; Ou X; Feng P; Wang S; Zhou F; Ling Y ACS Appl Mater Interfaces; 2018 Oct; 10(41):35047-35059. PubMed ID: 30251527 [TBL] [Abstract][Full Text] [Related]
20. Effect of Gas Diffusion Layer Notch Arrangement and Gradient Depth on the Performance of Proton Exchange Membrane Fuel Cells in the Serpentine Flow Field. Zhang H; Zhang L; Zhang Y; Hou Z; Liu J ACS Omega; 2023 Mar; 8(11):10191-10201. PubMed ID: 36969400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]