BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36363664)

  • 1. On the Choice of Different Water Model in Molecular Dynamics Simulations of Nanopore Transport Phenomena.
    Park C; Robinson F; Kim D
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36363664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of thermal conductivity in classical water models.
    Sirk TW; Moore S; Brown EF
    J Chem Phys; 2013 Feb; 138(6):064505. PubMed ID: 23425477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow of water through carbon nanotubes predicted by different atomistic water models.
    Losey J; Kannam SK; Todd BD; Sadus RJ
    J Chem Phys; 2019 May; 150(19):194501. PubMed ID: 31117773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water desalination using graphene nanopores: influence of the water models used in simulations.
    K VP; Kannam SK; Hartkamp R; Sathian SP
    Phys Chem Chem Phys; 2018 Jun; 20(23):16005-16011. PubMed ID: 29850695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Parametrization of Divalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models.
    Li Z; Song LF; Li P; Merz KM
    J Chem Theory Comput; 2020 Jul; 16(7):4429-4442. PubMed ID: 32510956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of water models on the prediction of slip length of water in graphene nanochannels.
    Celebi AT; Nguyen CT; Hartkamp R; Beskok A
    J Chem Phys; 2019 Nov; 151(17):174705. PubMed ID: 31703484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling water transport properties in carbon nanotubes: Interplay between force-field flexibility and geometrical parameters.
    Moreira LS; de Vargas DD; Köhler MH
    Phys Rev E; 2023 Sep; 108(3-1):034116. PubMed ID: 37849113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent.
    Li P; Roberts BP; Chakravorty DK; Merz KM
    J Chem Theory Comput; 2013 Jun; 9(6):2733-2748. PubMed ID: 23914143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide-TiO(2) interaction in aqueous solution: conformational dynamics of RGD using different water models.
    Wu C; Chen M; Guo C; Zhao X; Yuan C
    J Phys Chem B; 2010 Apr; 114(13):4692-701. PubMed ID: 20235568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametrization of Trivalent and Tetravalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models.
    Li Z; Song LF; Li P; Merz KM
    J Chem Theory Comput; 2021 Apr; 17(4):2342-2354. PubMed ID: 33793233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling thermodiffusion in aqueous sodium chloride solutions-Which water model is best?
    Hutchinson AJ; Torres JF; Corry B
    J Chem Phys; 2022 Apr; 156(16):164503. PubMed ID: 35490021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Design of Nonbonded Point Charge Models for Divalent Metal Cations with Lennard-Jones 12-6 Potential.
    Zhang Y; Jiang Y; Peng J; Zhang H
    J Chem Inf Model; 2021 Aug; 61(8):4031-4044. PubMed ID: 34313132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of lipid bilayers using the CHARMM36 force field with the TIP3P-FB and TIP4P-FB water models.
    Sajadi F; Rowley CN
    PeerJ; 2018; 6():e5472. PubMed ID: 30128211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized Magnesium Force Field Parameters for Biomolecular Simulations with Accurate Solvation, Ion-Binding, and Water-Exchange Properties in SPC/E, TIP3P-fb, TIP4P/2005, TIP4P-Ew, and TIP4P-D.
    Grotz KK; Schwierz N
    J Chem Theory Comput; 2022 Jan; 18(1):526-537. PubMed ID: 34881568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models.
    Zhang H; Yin C; Jiang Y; van der Spoel D
    J Chem Inf Model; 2018 May; 58(5):1037-1052. PubMed ID: 29648448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Layer Orientation and Pore Morphology on Water Transport in Multilayered Porous Graphene.
    Park C; Robinson F; Kim D
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of the effect of bond flexibility on the transport properties of water.
    Raabe G; Sadus RJ
    J Chem Phys; 2012 Sep; 137(10):104512. PubMed ID: 22979879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarizability effects in molecular dynamics simulations of the graphene-water interface.
    Ho TA; Striolo A
    J Chem Phys; 2013 Feb; 138(5):054117. PubMed ID: 23406108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the transferability of ion parameters to the TIP4P/2005 water model using molecular dynamics simulations.
    Döpke MF; Moultos OA; Hartkamp R
    J Chem Phys; 2020 Jan; 152(2):024501. PubMed ID: 31941316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion selection of charge-modified large nanopores in a graphene sheet.
    Zhao S; Xue J; Kang W
    J Chem Phys; 2013 Sep; 139(11):114702. PubMed ID: 24070300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.