These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36363664)

  • 21. Why different water models predict different structures under 2D confinement.
    Dix J; Lue L; Carbone P
    J Comput Chem; 2018 Sep; 39(25):2051-2059. PubMed ID: 30226923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene.
    Shankla M; Aksimentiev A
    Nat Commun; 2014 Oct; 5():5171. PubMed ID: 25296960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural properties and thermodynamics of water clusters: a Wang-Landau study.
    Yin J; Landau DP
    J Chem Phys; 2011 Feb; 134(7):074501. PubMed ID: 21341853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations.
    Liu Q; Shi C; Yu L; Zhang L; Xiong Y; Tian C
    Biochem Biophys Res Commun; 2015 Feb; 457(3):467-72. PubMed ID: 25600810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accuracy limit of rigid 3-point water models.
    Izadi S; Onufriev AV
    J Chem Phys; 2016 Aug; 145(7):074501. PubMed ID: 27544113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models.
    Sengupta A; Li Z; Song LF; Li P; Merz KM
    J Chem Inf Model; 2021 Feb; 61(2):869-880. PubMed ID: 33538599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular transportation phenomena of simple liquids through a nanoporous graphene membrane.
    Hasan MR; Kim B
    Phys Rev E; 2020 Sep; 102(3-1):033110. PubMed ID: 33075877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective Molecular Sieving through a Large Graphene Nanopore with Surface Charges.
    Sun C; Zhu S; Liu M; Shen S; Bai B
    J Phys Chem Lett; 2019 Nov; 10(22):7188-7194. PubMed ID: 31682132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability.
    Warren GL; Patel S
    J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pressure-induced water flow through model nanopores.
    Goldsmith J; Martens CC
    Phys Chem Chem Phys; 2009 Jan; 11(3):528-33. PubMed ID: 19283270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.
    Shankla M; Aksimentiev A
    J Phys Chem B; 2017 Apr; 121(15):3724-3733. PubMed ID: 28009170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupling solute interactions with functionalized graphene membranes: towards facile membrane-level engineering.
    Arya V; Chaudhuri A; Bakli C
    Nanoscale; 2022 Nov; 14(44):16661-16672. PubMed ID: 36330851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations.
    Lin ST; Maiti PK; Goddard WA
    J Phys Chem B; 2010 Jun; 114(24):8191-8. PubMed ID: 20504009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and dynamics of liquid water with different long-range interaction truncation and temperature control methods in molecular dynamics simulations.
    Mark P; Nilsson L
    J Comput Chem; 2002 Oct; 23(13):1211-9. PubMed ID: 12210146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Examining the Role of Different Molecular Interactions on Activation Energies and Activation Volumes in Liquid Water.
    Piskulich ZA; Thompson WH
    J Chem Theory Comput; 2021 May; 17(5):2659-2671. PubMed ID: 33819026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics of water in the neighborhood of aquaporins.
    Ozu M; Alvarez HA; McCarthy AN; Grigera JR; Chara O
    Eur Biophys J; 2013 Apr; 42(4):223-39. PubMed ID: 23274929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long time dynamics of Met-enkephalin: comparison of explicit and implicit solvent models.
    Shen My MY; Freed KF
    Biophys J; 2002 Apr; 82(4):1791-808. PubMed ID: 11916839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of transferable forcefields for protein simulations attests improved description of disordered states and secondary structure propensities, and hints at multi-protein systems as the next challenge for optimization.
    Abriata LA; Dal Peraro M
    Comput Struct Biotechnol J; 2021; 19():2626-2636. PubMed ID: 34025949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.