BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 36363685)

  • 1. Screening of
    Petkova M; Gotcheva V; Dimova M; Bartkiene E; Rocha JM; Angelov A
    Microorganisms; 2022 Oct; 10(11):. PubMed ID: 36363685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential application of lactic acid bacteria in the biopreservation of red grape from mycotoxigenic fungi.
    Dopazo V; Luz C; Quiles JM; Calpe J; Romano R; Mañes J; Meca G
    J Sci Food Agric; 2022 Feb; 102(3):898-907. PubMed ID: 34240436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of Lactic Acid Bacteria for the Bio-Control of
    De Simone N; Capozzi V; de Chiara MLV; Amodio ML; Brahimi S; Colelli G; Drider D; Spano G; Russo P
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33917211
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterization of Lactobacillus isolates from fermented olives and their bacteriocin gene profiles.
    Hurtado A; Ben Othman N; Chammem N; Hamdi M; Ferrer S; Reguant C; Bordons A; Rozès N
    Food Microbiol; 2011 Dec; 28(8):1514-8. PubMed ID: 21925038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technological and Safety Attributes of Lactic Acid Bacteria and Yeasts Isolated from Spontaneously Fermented Greek Wheat Sourdoughs.
    Syrokou MK; Tziompra S; Psychogiou EE; Mpisti SD; Paramithiotis S; Bosnea L; Mataragas M; Skandamis PN; Drosinos EH
    Microorganisms; 2021 Mar; 9(4):. PubMed ID: 33805132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking cell wall changes in wine and table grapes undergoing Botrytis cinerea infection using glycan microarrays.
    Weiller F; Schückel J; Willats WGT; Driouich A; Vivier MA; Moore JP
    Ann Bot; 2021 Sep; 128(5):527-543. PubMed ID: 34192306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quorum-sensing regulation of constitutive plantaricin by Lactobacillus plantarum strains under a model system for vegetables and fruits.
    Rizzello CG; Filannino P; Di Cagno R; Calasso M; Gobbetti M
    Appl Environ Microbiol; 2014 Jan; 80(2):777-87. PubMed ID: 24242246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of antimicrobial compounds obtained from the potential probiotic Lactiplantibacillus plantarum S61 and their application as a biopreservative agent.
    Abouloifa H; Rokni Y; Hasnaoui I; Bellaouchi R; Gaamouche S; Ghabbour N; Karboune S; Ben Salah R; Brasca M; D'hallewin G; Saalaoui E; Asehraou A
    Braz J Microbiol; 2022 Sep; 53(3):1501-1513. PubMed ID: 35804284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteriocin-Producing Lactic Acid Bacteria Strains with Antimicrobial Activity Screened from Bamei Pig Feces.
    Chen J; Pang H; Wang L; Ma C; Wu G; Liu Y; Guan Y; Zhang M; Qin G; Tan Z
    Foods; 2022 Feb; 11(5):. PubMed ID: 35267342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic Analysis for Antioxidant Property of Lactobacillus plantarum FLPL05 from Chinese Longevity People.
    Yu X; Li Y; Wu Q; Shah NP; Wei H; Xu F
    Probiotics Antimicrob Proteins; 2020 Dec; 12(4):1451-1458. PubMed ID: 32865760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterisation of new organisation of plnEF and plw loci of bacteriocin genes harbour concomitantly in Lactobacillus plantarum I-UL4.
    Tai HF; Foo HL; Abdul Rahim R; Loh TC; Abdullah MP; Yoshinobu K
    Microb Cell Fact; 2015 Jun; 14():89. PubMed ID: 26077560
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Selmi H; Rocchetti MT; Capozzi V; Semedo-Lemsaddek T; Fiocco D; Spano G; Abidi F
    Microorganisms; 2023 Oct; 11(11):. PubMed ID: 38004691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Aspergillus carbonarius in grape berries by Lactobacillus plantarum: A phenotypic and gene transcription study.
    Lappa IK; Mparampouti S; Lanza B; Panagou EZ
    Int J Food Microbiol; 2018 Jun; 275():56-65. PubMed ID: 29635101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cuticular waxes compounds from table grapes on growth, germination and gene expression in Botrytis cinerea.
    Silva-Moreno E; Brito-Echeverría J; López M; Ríos J; Balic I; Campos-Vargas R; Polanco R
    World J Microbiol Biotechnol; 2016 May; 32(5):74. PubMed ID: 27038944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and prediction of Botrytis cinerea infection levels in wine grapes using volatile analysis.
    Jiang L; Qiu Y; Dumlao MC; Donald WA; Steel CC; Schmidtke LM
    Food Chem; 2023 Sep; 421():136120. PubMed ID: 37098308
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    De Simone N; Pace B; Grieco F; Chimienti M; Tyibilika V; Santoro V; Capozzi V; Colelli G; Spano G; Russo P
    Foods; 2020 Aug; 9(9):. PubMed ID: 32824971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Botrytis cinerea from Table Grapes in Chile Using RAPD-PCR.
    Thompson JR; Latorre BA
    Plant Dis; 1999 Dec; 83(12):1090-1094. PubMed ID: 30841128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Botrytis cinerea expression profile and metabolism differs between noble and grey rot of grapes.
    Otto M; Geml J; Hegyi ÁI; Hegyi-Kaló J; Pierneef R; Pogány M; Kun J; Gyenesei A; Váczy KZ
    Food Microbiol; 2022 Sep; 106():104037. PubMed ID: 35690441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial Properties, Functional Characterisation and Application of Fructobacillus fructosus and Lactiplantibacillus plantarum Isolated from Artisanal Honey.
    De Simone N; Rocchetti MT; la Gatta B; Spano G; Drider D; Capozzi V; Russo P; Fiocco D
    Probiotics Antimicrob Proteins; 2023 Oct; 15(5):1406-1423. PubMed ID: 36173591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea.
    Wang L; Liu W; Wang Y
    Plant Sci; 2020 Apr; 293():110421. PubMed ID: 32081269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.