BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 36363818)

  • 1. Characterization of
    Vahidinasab M; Adiek I; Hosseini B; Akintayo SO; Abrishamchi B; Pfannstiel J; Henkel M; Lilge L; Voegele RT; Hausmann R
    Microorganisms; 2022 Nov; 10(11):. PubMed ID: 36363818
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization ofantifungal properties of lipopeptide-producing
    Akintayo SO; Hosseini B; Vahidinasab M; Messmer M; Pfannstiel J; Bertsche U; Hubel P; Henkel M; Hausmann R; Voegele RT; Lilge L
    Front Bioeng Biotechnol; 2023; 11():1228386. PubMed ID: 37609113
    [No Abstract]   [Full Text] [Related]  

  • 3. Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize.
    Liu Y; Teng K; Wang T; Dong E; Zhang M; Tao Y; Zhong J
    J Appl Microbiol; 2020 Jan; 128(1):242-254. PubMed ID: 31559664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacillus velezensis UTB96 Is an Antifungal Soil Isolate with a Reduced Genome Size Compared to That of Bacillus velezensis FZB42.
    Vahidinasab M; Ahmadzadeh M; Henkel M; Hausmann R; Morabbi Heravi K
    Microbiol Resour Announc; 2019 Sep; 8(38):. PubMed ID: 31537661
    [No Abstract]   [Full Text] [Related]  

  • 5. The Plant-Beneficial Rhizobacterium Bacillus velezensis FZB42 Controls the Soybean Pathogen Phytophthora sojae Due to Bacilysin Production.
    Han X; Shen D; Xiong Q; Bao B; Zhang W; Dai T; Zhao Y; Borriss R; Fan B
    Appl Environ Microbiol; 2021 Nov; 87(23):e0160121. PubMed ID: 34550751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Food safety and biological control; genomic insights and antimicrobial potential of Bacillus velezensis FB2 against agricultural fungal pathogens.
    Hammad M; Ali H; Hassan N; Tawab A; Salman M; Jawad I; de Jong A; Moreno CM; Kuipers OP; Feroz Y; Rashid MH
    PLoS One; 2023; 18(11):e0291975. PubMed ID: 37963161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects.
    Zaid DS; Cai S; Hu C; Li Z; Li Y
    Microbiol Spectr; 2022 Feb; 10(1):e0216921. PubMed ID: 35107331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the biocontrol potential of Canadian strain Bacillus velezensis 1B-23 via its surfactin production at various pHs and temperatures.
    Li MSM; Piccoli DA; McDowell T; MacDonald J; Renaud J; Yuan ZC
    BMC Biotechnol; 2021 Apr; 21(1):31. PubMed ID: 33926450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete Genome of Bacillus velezensis CMT-6 and Comparative Genome Analysis Reveals Lipopeptide Diversity.
    Deng Q; Wang R; Sun D; Sun L; Wang Y; Pu Y; Fang Z; Xu D; Liu Y; Ye R; Yin S; Xie S; Gooneratne R
    Biochem Genet; 2020 Feb; 58(1):1-15. PubMed ID: 31098827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic and metabolomic insights into the antimicrobial compounds and plant growth-promoting potential of Bacillus velezensis Q-426.
    Wang L; Fan R; Ma H; Sun Y; Huang Y; Wang Y; Guo Q; Ren X; Xu L; Zhao J; Zhang L; Xu Y; Jin L; Dong Y; Quan C
    BMC Genomics; 2023 Oct; 24(1):589. PubMed ID: 37794314
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Kim JA; Song JS; Kim PI; Kim DH; Kim Y
    J Fungi (Basel); 2022 Oct; 8(10):. PubMed ID: 36294618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of a high iturin yielding Bacillus velezensis UV mutant with improved antifungal activity.
    Kim YT; Kim SE; Lee WJ; Fumei Z; Cho MS; Moon JS; Oh HW; Park HY; Kim SU
    PLoS One; 2020; 15(12):e0234177. PubMed ID: 33270634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory activity of bacterial lipopeptides against Fusarium oxysporum f.sp. Strigae.
    Assena MW; Pfannstiel J; Rasche F
    BMC Microbiol; 2024 Jun; 24(1):227. PubMed ID: 38937715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Killing Effect of
    Mácha H; Marešová H; Juříková T; Švecová M; Benada O; Škríba A; Baránek M; Novotný Č; Palyzová A
    Microorganisms; 2021 Jun; 9(7):. PubMed ID: 34210064
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Tang T; Wang F; Huang H; Guo J; Guo X; Duan Y; Wang X; Wang Q; You J
    Front Microbiol; 2024; 15():1337655. PubMed ID: 38500587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Sequencing and Characterization of
    Yang P; Zeng Q; Jiang W; Wang L; Zhang J; Wang Z; Wang Q; Li Y
    Microorganisms; 2024 Jan; 12(2):. PubMed ID: 38399699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance thin-layer chromatography (HPTLC) for the simultaneous quantification of the cyclic lipopeptides Surfactin, Iturin A and Fengycin in culture samples of Bacillus species.
    Geissler M; Oellig C; Moss K; Schwack W; Henkel M; Hausmann R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Feb; 1044-1045():214-224. PubMed ID: 28153674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depiction of secondary metabolites and antifungal activity of
    Devi S; Kiesewalter HT; Kovács R; Frisvad JC; Weber T; Larsen TO; Kovács ÁT; Ding L
    Synth Syst Biotechnol; 2019 Sep; 4(3):142-149. PubMed ID: 31508511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Omics Techniques for Analysis Antifungal Mechanisms of Lipopeptides Produced by
    Zhang Y; Zhao M; Chen W; Yu H; Jia W; Pan H; Zhang X
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409115
    [No Abstract]   [Full Text] [Related]  

  • 20. Genome mining and UHPLC-QTOF-MS/MS to identify the potential antimicrobial compounds and determine the specificity of biosynthetic gene clusters in Bacillus subtilis NCD-2.
    Su Z; Chen X; Liu X; Guo Q; Li S; Lu X; Zhang X; Wang P; Dong L; Zhao W; Ma P
    BMC Genomics; 2020 Nov; 21(1):767. PubMed ID: 33153447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.