These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36363908)

  • 1. Constant-Power versus Constant-Voltage Actuation in Frequency Sweeps for Acoustofluidic Applications.
    Lickert F; Bruus H; Rossi M
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microparticle Acoustophoresis in Aluminum-Based Acoustofluidic Devices with PDMS Covers.
    Bodé WN; Jiang L; Laurell T; Bruus H
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32168805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustophoresis in polymer-based microfluidic devices: Modeling and experimental validation.
    Lickert F; Ohlin M; Bruus H; Ohlsson P
    J Acoust Soc Am; 2021 Jun; 149(6):4281. PubMed ID: 34241446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward optimal acoustophoretic microparticle manipulation by exploiting asymmetry.
    Tahmasebipour A; Friedrich L; Begley M; Bruus H; Meinhart C
    J Acoust Soc Am; 2020 Jul; 148(1):359. PubMed ID: 32752779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential impedance spectra analysis reveals optimal actuation frequency in bulk mode acoustophoresis.
    Vitali V; Core G; Garofalo F; Laurell T; Lenshof A
    Sci Rep; 2019 Dec; 9(1):19081. PubMed ID: 31836756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driving frequency optimization of a piezoelectric transducer and the power supply development.
    Dong X; Yuan T; Hu M; Shekhani H; Maida Y; Tou T; Uchino K
    Rev Sci Instrum; 2016 Oct; 87(10):105003. PubMed ID: 27802753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustophoresis of monodisperse oil droplets in water: Effect of symmetry breaking and non-resonance operation on oil trapping behavior.
    Bazyar H; Kandemir MH; Peper J; Andrade MAB; Bernassau AL; Schroën K; Lammertink RGH
    Biomicrofluidics; 2023 Dec; 17(6):064107. PubMed ID: 38162227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip.
    Han J; Hu H; Lei Y; Huang Q; Fu C; Gai C; Ning J
    ACS Omega; 2023 Jan; 8(1):311-323. PubMed ID: 36643460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissimilar trend of nonlinearity in ultrasound transducers and systems at resonance and non-resonance frequencies.
    Ghasemi N; Zare F; Davari P; Vilathgamuwa M; Ghosh A; Langton C; Weber P
    Ultrasonics; 2017 Feb; 74():21-29. PubMed ID: 27718377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin film piezoelectrics for bulk acoustic wave (BAW) acoustophoresis.
    Reichert P; Deshmukh D; Lebovitz L; Dual J
    Lab Chip; 2018 Dec; 18(23):3655-3667. PubMed ID: 30374500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.
    Lewis GK; Olbricht WL
    Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Performance of an Acoustofluidic Device by Integrating Temperature Control.
    Hashemiesfahan M; Gelin P; Maisto A; Gardeniers H; De Malsche W
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Detection and Control of Microchannel Resonance Frequency in Acoustic Trapping Systems by Monitoring Amplifier Supply Currents.
    Farmehini V; Kiendzior S; Landers JP; Swami NS
    ACS Sens; 2021 Oct; 6(10):3765-3772. PubMed ID: 34586786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-Voltage-Boost Circuit-Supported Single-Ended Class-B Amplifier for Piezoelectric Transducer Applications.
    Kim J; You K; Choi H
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32967294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Silicon Microfluidic Chips for Acoustic Particle Focusing Using Direct Laser Writing.
    Fornell A; Söderbäck P; Liu Z; De Albuquerque Moreira M; Tenje M
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31972982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation.
    Dong J; Liang D; Yang X; Sun C
    Ultrasonics; 2021 Dec; 117():106547. PubMed ID: 34419898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An extended view for acoustofluidic particle manipulation: Scenarios for actuation modes and device resonance phenomenon for bulk-acoustic-wave devices.
    Özer MB; Çetin B
    J Acoust Soc Am; 2021 Apr; 149(4):2802. PubMed ID: 33940873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power-controlled acoustofluidic manipulation of microparticles.
    Wu F; Wang H; Sun C; Yuan F; Xie Z; Mikhaylov R; Wu Z; Shen M; Yang J; Evans W; Fu Y; Tian L; Yang X
    Ultrasonics; 2023 Sep; 134():107087. PubMed ID: 37406388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.