These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36363927)

  • 21. Effects of frost formation on the ice adhesion of micro-nano structure metal surface by femtosecond laser.
    Liu Z; Ye F; Tao H; Lin J
    J Colloid Interface Sci; 2021 Dec; 603():233-242. PubMed ID: 34186400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Delayed frost growth on jumping-drop superhydrophobic surfaces.
    Boreyko JB; Collier CP
    ACS Nano; 2013 Feb; 7(2):1618-27. PubMed ID: 23286736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiscale Dynamic Growth and Energy Transport of Droplets during Condensation.
    Xu Z; Zhang L; Wilke K; Wang EN
    Langmuir; 2018 Jul; 34(30):9085-9095. PubMed ID: 29989821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication Optimization of Ultra-Scalable Nanostructured Aluminum-Alloy Surfaces.
    Li L; Lin Y; Rabbi KF; Ma J; Chen Z; Patel A; Su W; Ma X; Boyina K; Sett S; Mondal D; Tomohiro N; Hirokazu F; Miljkovic N
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43489-43504. PubMed ID: 34468116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis on frosting of heat exchanger and numerical simulation of heat transfer characteristics using BP neural network learning algorithm.
    Yu B; Luo Y; Chu W
    PLoS One; 2021; 16(9):e0256836. PubMed ID: 34473780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frosting Behavior of Superhydrophobic Nanoarrays under Ultralow Temperature.
    Zhang W; Wang S; Xiao Z; Yu X; Liang C; Zhang Y
    Langmuir; 2017 Sep; 33(36):8891-8898. PubMed ID: 28829603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling condensation and frost growth with chemical micropatterns.
    Boreyko JB; Hansen RR; Murphy KR; Nath S; Retterer ST; Collier CP
    Sci Rep; 2016 Jan; 6():19131. PubMed ID: 26796663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frost formation through super-cooled water within micron gap of galvanic coupled arrays.
    Mekawy M; Hirayama K; Sakamoto Y; Kawakita J
    RSC Adv; 2022 Nov; 12(53):34694-34703. PubMed ID: 36545606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving the anti-icing/frosting property of a nanostructured superhydrophobic surface by the optimum selection of a surface modifier.
    Zuo Z; Liao R; Song X; Zhao X; Yuan Y
    RSC Adv; 2018 May; 8(36):19906-19916. PubMed ID: 35541649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomistic Description of Interdroplet Ice-Bridge Formation during Condensation Frosting.
    Curiotto S; Paulovics D; Raufaste C; Celestini F; Frisch T; Leroy F; Cheynis F; Müller P
    Langmuir; 2023 Jan; 39(1):579-587. PubMed ID: 36534788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces.
    Zhao G; Zou G; Wang W; Geng R; Yan X; He Z; Liu L; Zhou X; Lv J; Wang J
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7805-7814. PubMed ID: 31972085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Condensation droplet sieve.
    Ma C; Chen L; Wang L; Tong W; Chu C; Yuan Z; Lv C; Zheng Q
    Nat Commun; 2022 Sep; 13(1):5381. PubMed ID: 36104319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.
    Li G; Alhosani MH; Yuan S; Liu H; Ghaferi AA; Zhang T
    Langmuir; 2014 Dec; 30(48):14498-511. PubMed ID: 25419845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental study on the mechanism of ice layer formation in fractured rock masses in cold regions.
    Wang L; Dong Z; Li N; Wang W; Tian Y; Xu S
    Sci Rep; 2022 Oct; 12(1):17954. PubMed ID: 36289425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.
    Nath S; Boreyko JB
    Langmuir; 2016 Aug; 32(33):8350-65. PubMed ID: 27463696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Study of Droplet-Behavior Transition on Superhydrophobic Surfaces for Efficiency Enhancement of Condensation Heat Transfer.
    Lee JW; Ji DY; Lee KY; Hwang W
    ACS Omega; 2020 Nov; 5(43):27880-27885. PubMed ID: 33163771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppressing Condensation Frosting Using an Out-of-Plane Dry Zone.
    Ahmadi SF; Spohn CA; Nath S; Boreyko JB
    Langmuir; 2020 Dec; 36(51):15603-15609. PubMed ID: 33325712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect.
    Jin Y; Zhang L; Wang P
    Glob Chall; 2017 Jul; 1(4):1700019. PubMed ID: 31565272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combating Frosting with Joule-Heated Liquid-Infused Superhydrophobic Coatings.
    Elsharkawy M; Tortorella D; Kapatral S; Megaridis CM
    Langmuir; 2016 May; 32(17):4278-88. PubMed ID: 27021948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.