These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 36364023)
1. Production of Primary Metabolites by Zaveri A; Edwards J; Rochfort S Molecules; 2022 Oct; 27(21):. PubMed ID: 36364023 [TBL] [Abstract][Full Text] [Related]
2. Restricted Nitrogen and Water Applications in the Orchard Modify the Carbohydrate and Amino Acid Composition of Nonpareil and Carmel Almond Hulls. Zaveri A; Edwards J; Rochfort S Metabolites; 2021 Sep; 11(10):. PubMed ID: 34677389 [TBL] [Abstract][Full Text] [Related]
3. Efficient production of lactic acid from sucrose and corncob hydrolysate by a newly isolated Rhizopus oryzae GY18. Guo Y; Yan Q; Jiang Z; Teng C; Wang X J Ind Microbiol Biotechnol; 2010 Nov; 37(11):1137-43. PubMed ID: 20556475 [TBL] [Abstract][Full Text] [Related]
4. Lactic acid production from xylose by the fungus Rhizopus oryzae. Maas RH; Bakker RR; Eggink G; Weusthuis RA Appl Microbiol Biotechnol; 2006 Oct; 72(5):861-8. PubMed ID: 16528511 [TBL] [Abstract][Full Text] [Related]
5. Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on L+-lactic acid production. Maas RH; Springer J; Eggink G; Weusthuis RA J Ind Microbiol Biotechnol; 2008 Jun; 35(6):569-78. PubMed ID: 18247072 [TBL] [Abstract][Full Text] [Related]
6. Effects of Deficit Irrigation on Hull Rot Disease of Almond Trees Caused by Monilinia fructicola and Rhizopus stolonifer. Teviotdale BL; Goldhamer DA; Viveros M Plant Dis; 2001 Apr; 85(4):399-403. PubMed ID: 30831973 [TBL] [Abstract][Full Text] [Related]
7. A co-utilization strategy to consume glycerol and monosaccharides by Rhizopus strains for fumaric acid production. Kowalczyk S; Komoń-Janczara E; Glibowska A; Kuzdraliński A; Czernecki T; Targoński Z AMB Express; 2018 Apr; 8(1):69. PubMed ID: 29713843 [TBL] [Abstract][Full Text] [Related]
8. Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863. Ochsenreither K; Fischer C; Neumann A; Syldatk C Appl Microbiol Biotechnol; 2014 Jun; 98(12):5449-60. PubMed ID: 24604500 [TBL] [Abstract][Full Text] [Related]
9. [Effects of nitrogen-limitation on xylose metabolism and key enzymes activity in Rhizopus oryzae]. Yu Y; Xu Q; Li S Wei Sheng Wu Xue Bao; 2013 Nov; 53(11):1189-94. PubMed ID: 24617260 [TBL] [Abstract][Full Text] [Related]
10. Co-fermentation of a mixture of glucose and xylose to fumaric acid by Rhizopus arrhizus RH 7-13-9. Liu H; Hu H; Jin Y; Yue X; Deng L; Wang F; Tan T Bioresour Technol; 2017 Jun; 233():30-33. PubMed ID: 28258993 [TBL] [Abstract][Full Text] [Related]
11. A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae. Wang G; Huang D; Li Y; Wen J; Jia X Bioresour Technol; 2015 Mar; 180():119-27. PubMed ID: 25594507 [TBL] [Abstract][Full Text] [Related]
12. L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae. Liaud N; Rosso MN; Fabre N; Crapart S; Herpoël-Gimbert I; Sigoillot JC; Raouche S; Levasseur A Microb Cell Fact; 2015 May; 14():66. PubMed ID: 25935554 [TBL] [Abstract][Full Text] [Related]
13. Ferulic acid triggering a co-production of 4-vinyl guaiacol and fumaric acid from lignocellulose-based carbon source by Rhizopus oryzae. Tang X; Wu S; Hua X; Fan Y; Li X Food Chem; 2024 Dec; 461():140799. PubMed ID: 39154464 [TBL] [Abstract][Full Text] [Related]
14. High production of fumaric acid from xylose by newly selected strain Rhizopus arrhizus RH 7-13-9#. Liu H; Wang W; Deng L; Wang F; Tan T Bioresour Technol; 2015 Jun; 186():348-350. PubMed ID: 25862014 [TBL] [Abstract][Full Text] [Related]
15. Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity. Skory CD Appl Microbiol Biotechnol; 2004 Apr; 64(2):237-42. PubMed ID: 14624317 [TBL] [Abstract][Full Text] [Related]
16. L(+)-lactic acid production by co-fermentation of glucose and xylose with Rhizopus oryzae obtained by low-energy ion beam irradiation. Wang P; Li J; Wang L; Tang ML; Yu ZL; Zheng ZM J Ind Microbiol Biotechnol; 2009 Nov; 36(11):1363-8. PubMed ID: 19653020 [TBL] [Abstract][Full Text] [Related]
18. Fumaric acid production by Rhizopus species from acid hydrolysate of oil palm empty fruit bunches. Pairazamán OD; Woiciechowski AL; Zevallos LA; Tanobe VOA; Zandona A; Soccol CR Braz J Microbiol; 2024 Jun; 55(2):1179-1187. PubMed ID: 38671219 [TBL] [Abstract][Full Text] [Related]
19. Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acid-production from xylose. Pan X; Liu H; Liu J; Wang C; Wen J Bioresour Technol; 2016 Dec; 222():24-32. PubMed ID: 27697734 [TBL] [Abstract][Full Text] [Related]
20. Production of fumaric acid by Rhizopus oryzae: role of carbon-nitrogen ratio. Ding Y; Li S; Dou C; Yu Y; Huang H Appl Biochem Biotechnol; 2011 Aug; 164(8):1461-7. PubMed ID: 21416336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]