BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36364342)

  • 1. Valorization of Different Fractions from Butiá Pomace by Pyrolysis: H
    Nunes IDS; Schnorr C; Perondi D; Godinho M; Diel JC; Machado LMM; Dalla Nora FB; Silva LFO; Dotto GL
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valorization of wipe wastes for the synthesis of microporous carbons and their application in CO
    Cecilia JA; Vilarrasa-García E; Azevedo DCS; Vílchez-Cózar A; Infantes-Molina A; Ballesteros-Plata D; Barroso-Martín I; Rodríguez-Castellón E
    Heliyon; 2023 Oct; 9(10):e20606. PubMed ID: 37860566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H
    da Silva MD; da Boit Martinello K; Knani S; Lütke SF; Machado LMM; Manera C; Perondi D; Godinho M; Collazzo GC; Silva LFO; Dotto GL
    Waste Manag; 2022 Oct; 152():17-29. PubMed ID: 35964399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry.
    Igalavithana AD; Choi SW; Shang J; Hanif A; Dissanayake PD; Tsang DCW; Kwon JH; Lee KB; Ok YS
    Sci Total Environ; 2020 Oct; 739():139845. PubMed ID: 32758935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gasification biochar from biowaste (food waste and wood waste) for effective CO
    Igalavithana AD; Choi SW; Dissanayake PD; Shang J; Wang CH; Yang X; Kim S; Tsang DCW; Lee KB; Ok YS
    J Hazard Mater; 2020 Jun; 391():121147. PubMed ID: 32145924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation.
    Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX
    Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO
    Gil-Lalaguna N; Navarro-Gil Á; Carstensen HH; Ruiz J; Fonts I; Ceamanos J; Murillo MB; Gea G
    Sci Total Environ; 2022 Nov; 846():157395. PubMed ID: 35843337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon capture of biochar produced by microwave co-pyrolysis: adsorption capacity, kinetics, and benefits.
    Huang YF; Chiueh PT; Lo SL
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):22211-22221. PubMed ID: 36280634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dioxide as a carrier gas and mixed feedstock pyrolysis decreased toxicity of sewage sludge biochar.
    Kończak M; Pan B; Ok YS; Oleszczuk P
    Sci Total Environ; 2020 Jun; 723():137796. PubMed ID: 32222497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green and simple approach for low-cost bioproducts preparation and CO
    Durán-Jiménez G; Kostas ET; Stevens LA; Meredith W; Erans M; Hernández-Montoya V; Buttress A; Uguna CN; Binner E
    Chemosphere; 2021 Sep; 279():130512. PubMed ID: 33878690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converting industrial waste cork to biochar as Cu (II) adsorbent via slow pyrolysis.
    Wang Q; Lai Z; Mu J; Chu D; Zang X
    Waste Manag; 2020 Mar; 105():102-109. PubMed ID: 32044548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental strategy for the preparation of adsorbent materials from torrefied palm kernel shell oriented to CO
    Cordoba-Ramirez M; Chejne F; Alean J; Gómez CA; Navarro-Gil Á; Ábrego J; Gea G
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18765-18784. PubMed ID: 38349490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas.
    Islam MS; Kwak JH; Nzediegwu C; Wang S; Palansuriya K; Kwon EE; Naeth MA; El-Din MG; Ok YS; Chang SX
    Environ Pollut; 2021 Jul; 281():117094. PubMed ID: 33848767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of oil palm fiber biochar and activated biochar for sulphur dioxide adsorption.
    Iberahim N; Sethupathi S; Bashir MJK; Kanthasamy R; Ahmad T
    Sci Total Environ; 2022 Jan; 805():150421. PubMed ID: 34818803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of spent mushroom substrate-derived biochar on soil CO
    Deng B; Shi Y; Zhang L; Fang H; Gao Y; Luo L; Feng W; Hu X; Wan S; Huang W; Guo X; Siemann E
    Chemosphere; 2020 May; 246():125608. PubMed ID: 31884231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis wastewater treatment by adsorption on biochars produced by poplar biomass.
    de Caprariis B; De Filippis P; Hernandez AD; Petrucci E; Petrullo A; Scarsella M; Turchi M
    J Environ Manage; 2017 Jul; 197():231-238. PubMed ID: 28391096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient removal of volatile organic compound by ball-milled biochars from different preparing conditions.
    Zhuang Z; Wang L; Tang J
    J Hazard Mater; 2021 Mar; 406():124676. PubMed ID: 33310330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Valorization of alum sludge via a pyrolysis platform using CO
    Choi D; Oh JI; Lee J; Park YK; Lam SS; Kwon EE
    Environ Int; 2019 Nov; 132():105037. PubMed ID: 31437646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution.
    Jin Y; Zhang M; Jin Z; Wang G; Li R; Zhang X; Liu X; Qu J; Wang H
    Environ Res; 2021 May; 196():110323. PubMed ID: 33098819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge.
    Wei S; Zhu M; Fan X; Song J; Peng P; Li K; Jia W; Song H
    Chemosphere; 2019 Mar; 218():624-631. PubMed ID: 30502701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.