These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 36364342)
1. Valorization of Different Fractions from Butiá Pomace by Pyrolysis: H Nunes IDS; Schnorr C; Perondi D; Godinho M; Diel JC; Machado LMM; Dalla Nora FB; Silva LFO; Dotto GL Molecules; 2022 Nov; 27(21):. PubMed ID: 36364342 [TBL] [Abstract][Full Text] [Related]
2. Valorization of wipe wastes for the synthesis of microporous carbons and their application in CO Cecilia JA; Vilarrasa-García E; Azevedo DCS; Vílchez-Cózar A; Infantes-Molina A; Ballesteros-Plata D; Barroso-Martín I; Rodríguez-Castellón E Heliyon; 2023 Oct; 9(10):e20606. PubMed ID: 37860566 [TBL] [Abstract][Full Text] [Related]
3. Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H da Silva MD; da Boit Martinello K; Knani S; Lütke SF; Machado LMM; Manera C; Perondi D; Godinho M; Collazzo GC; Silva LFO; Dotto GL Waste Manag; 2022 Oct; 152():17-29. PubMed ID: 35964399 [TBL] [Abstract][Full Text] [Related]
4. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry. Igalavithana AD; Choi SW; Shang J; Hanif A; Dissanayake PD; Tsang DCW; Kwon JH; Lee KB; Ok YS Sci Total Environ; 2020 Oct; 739():139845. PubMed ID: 32758935 [TBL] [Abstract][Full Text] [Related]
5. Gasification biochar from biowaste (food waste and wood waste) for effective CO Igalavithana AD; Choi SW; Dissanayake PD; Shang J; Wang CH; Yang X; Kim S; Tsang DCW; Lee KB; Ok YS J Hazard Mater; 2020 Jun; 391():121147. PubMed ID: 32145924 [TBL] [Abstract][Full Text] [Related]
6. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131 [TBL] [Abstract][Full Text] [Related]
8. Carbon capture of biochar produced by microwave co-pyrolysis: adsorption capacity, kinetics, and benefits. Huang YF; Chiueh PT; Lo SL Environ Sci Pollut Res Int; 2023 Feb; 30(9):22211-22221. PubMed ID: 36280634 [TBL] [Abstract][Full Text] [Related]
9. Carbon dioxide as a carrier gas and mixed feedstock pyrolysis decreased toxicity of sewage sludge biochar. Kończak M; Pan B; Ok YS; Oleszczuk P Sci Total Environ; 2020 Jun; 723():137796. PubMed ID: 32222497 [TBL] [Abstract][Full Text] [Related]
10. Green and simple approach for low-cost bioproducts preparation and CO Durán-Jiménez G; Kostas ET; Stevens LA; Meredith W; Erans M; Hernández-Montoya V; Buttress A; Uguna CN; Binner E Chemosphere; 2021 Sep; 279():130512. PubMed ID: 33878690 [TBL] [Abstract][Full Text] [Related]
11. Converting industrial waste cork to biochar as Cu (II) adsorbent via slow pyrolysis. Wang Q; Lai Z; Mu J; Chu D; Zang X Waste Manag; 2020 Mar; 105():102-109. PubMed ID: 32044548 [TBL] [Abstract][Full Text] [Related]
12. Experimental strategy for the preparation of adsorbent materials from torrefied palm kernel shell oriented to CO Cordoba-Ramirez M; Chejne F; Alean J; Gómez CA; Navarro-Gil Á; Ábrego J; Gea G Environ Sci Pollut Res Int; 2024 Mar; 31(12):18765-18784. PubMed ID: 38349490 [TBL] [Abstract][Full Text] [Related]
13. Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. Islam MS; Kwak JH; Nzediegwu C; Wang S; Palansuriya K; Kwon EE; Naeth MA; El-Din MG; Ok YS; Chang SX Environ Pollut; 2021 Jul; 281():117094. PubMed ID: 33848767 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of oil palm fiber biochar and activated biochar for sulphur dioxide adsorption. Iberahim N; Sethupathi S; Bashir MJK; Kanthasamy R; Ahmad T Sci Total Environ; 2022 Jan; 805():150421. PubMed ID: 34818803 [TBL] [Abstract][Full Text] [Related]
15. Effects of spent mushroom substrate-derived biochar on soil CO Deng B; Shi Y; Zhang L; Fang H; Gao Y; Luo L; Feng W; Hu X; Wan S; Huang W; Guo X; Siemann E Chemosphere; 2020 May; 246():125608. PubMed ID: 31884231 [TBL] [Abstract][Full Text] [Related]
16. Pyrolysis wastewater treatment by adsorption on biochars produced by poplar biomass. de Caprariis B; De Filippis P; Hernandez AD; Petrucci E; Petrullo A; Scarsella M; Turchi M J Environ Manage; 2017 Jul; 197():231-238. PubMed ID: 28391096 [TBL] [Abstract][Full Text] [Related]
17. Efficient removal of volatile organic compound by ball-milled biochars from different preparing conditions. Zhuang Z; Wang L; Tang J J Hazard Mater; 2021 Mar; 406():124676. PubMed ID: 33310330 [TBL] [Abstract][Full Text] [Related]
18. Valorization of alum sludge via a pyrolysis platform using CO Choi D; Oh JI; Lee J; Park YK; Lam SS; Kwon EE Environ Int; 2019 Nov; 132():105037. PubMed ID: 31437646 [TBL] [Abstract][Full Text] [Related]
19. Alternative green application areas for olive pomace catalytic pyrolysis biochar obtained via marble sludge catalyst. Goktepeli G; Ozgan A; Onen V; Ahmetli G; Kalem M; Yel E Biodegradation; 2024 Oct; 35(6):907-938. PubMed ID: 38954367 [TBL] [Abstract][Full Text] [Related]
20. Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution. Jin Y; Zhang M; Jin Z; Wang G; Li R; Zhang X; Liu X; Qu J; Wang H Environ Res; 2021 May; 196():110323. PubMed ID: 33098819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]