These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36364350)

  • 41. Ultra-efficient catalytic degradation of malachite green dye wastewater by KMnO
    Zhu H; Zou H
    RSC Adv; 2022 Sep; 12(41):27002-27011. PubMed ID: 36320839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly efficient catalytic pyrolysis of polyethylene waste to derive fuel products by novel polyoxometalate/kaolin composites.
    Attique S; Batool M; Yaqub M; Goerke O; Gregory DH; Shah AT
    Waste Manag Res; 2020 Jun; 38(6):689-695. PubMed ID: 32026752
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A natural sorbent, Luffa cylindrica for the removal of a model basic dye.
    Altinişik A; Gür E; Seki Y
    J Hazard Mater; 2010 Jul; 179(1-3):658-64. PubMed ID: 20378245
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wet air oxidation of a reactive dye solution using CoAlPO(4)-5 and CeO(2) catalysts.
    Chang DJ; Chen IP; Chen MT; Lin SS
    Chemosphere; 2003 Aug; 52(6):943-9. PubMed ID: 12781227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wet oxidation of acid brown dye by hydrogen peroxide using heterogeneous catalyst Mn-salen-Y zeolite: a potential catalyst.
    Aravindhan R; Fathima NN; Rao JR; Nair BU
    J Hazard Mater; 2006 Nov; 138(1):152-9. PubMed ID: 16814465
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure.
    Xu Y; Li X; Cheng X; Sun D; Wang X
    Environ Sci Technol; 2012 Mar; 46(5):2856-63. PubMed ID: 22369476
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Partial Oxidation of Methane to Syngas Over Nickel-Based Catalysts: Influence of Support Type, Addition of Rhodium, and Preparation Method.
    Alvarez-Galvan C; Melian M; Ruiz-Matas L; Eslava JL; Navarro RM; Ahmadi M; Roldan Cuenya B; Fierro JLG
    Front Chem; 2019; 7():104. PubMed ID: 30931293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photo-degradation of acid green dye over Co-ZSM-5 catalysts prepared by incipient wetness impregnation technique.
    El-Bahy ZM; Mohamed MM; Zidan FI; Thabet MS
    J Hazard Mater; 2008 May; 153(1-2):364-71. PubMed ID: 17904732
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catalytic wet air oxidation of Reactive Black 5 in the presence of LaNiO
    Palas B; Ersöz G; Atalay S
    Chemosphere; 2018 Oct; 209():823-830. PubMed ID: 30114730
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characteristics of CuO-MoO3-P2O5 catalyst and its catalytic wet oxidation (CWO) of dye wastewater under extremely mild conditions.
    Ma H; Zhuo Q; Wang B
    Environ Sci Technol; 2007 Nov; 41(21):7491-6. PubMed ID: 18044531
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Treatment of aniline by catalytic wet air oxidation: comparative study over CuO/CeO2 and NiO/Al2O3.
    Ersöz G; Atalay S
    J Environ Manage; 2012 Dec; 113():244-50. PubMed ID: 23041516
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fe(III)-loaded collagen fiber as a heterogeneous catalyst for the photo-assisted decomposition of Malachite Green.
    Liu X; Tang R; He Q; Liao X; Shi B
    J Hazard Mater; 2010 Feb; 174(1-3):687-93. PubMed ID: 19828245
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative evaluation of synthesis routes of Cu/zeolite Y catalysts for catalytic wet peroxide oxidation of quinoline in fixed-bed reactor.
    Singh L; Rekha P; Chand S
    J Environ Manage; 2018 Jun; 215():1-12. PubMed ID: 29550542
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrochemical oxidation of pulp and paper making wastewater assisted by transition metal modified kaolin.
    Wang B; Gu L; Ma H
    J Hazard Mater; 2007 May; 143(1-2):198-205. PubMed ID: 17046154
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metal nanoparticles decorated sodium alginate‑carbon nitride composite beads as effective catalyst for the reduction of organic pollutants.
    Khan SB; Ahmad S; Kamal T; Asiri AM; Bakhsh EM
    Int J Biol Macromol; 2020 Dec; 164():1087-1098. PubMed ID: 32673713
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide.
    Kim SC
    J Hazard Mater; 2002 Apr; 91(1-3):285-99. PubMed ID: 11900919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using coal fly ash as a support for Mn(II), Co(II) and Ni(II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization.
    Deka B; Bhattacharyya KG
    J Environ Manage; 2015 Mar; 150():479-488. PubMed ID: 25560663
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur.
    Chen CL; Wang CH; Weng HS
    Chemosphere; 2004 Aug; 56(5):425-31. PubMed ID: 15212907
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Graphitic carbon nitride-adorned PDMS self-cleaning floating photocatalyst for simultaneous removal of Rhodamine B, Crystal Violet and Malachite Green from a ternary dye mixture.
    Viswanathan S; Biju J; Kallingal A
    Environ Sci Pollut Res Int; 2023 Nov; 30(55):117325-117339. PubMed ID: 37864691
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lanthanum-Modified MCF-Derived Nickel Phyllosilicate Catalyst for Enhanced CO
    Zhang T; Liu Q
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19587-19600. PubMed ID: 32281371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.