These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36364481)
1. Scalable Preparation of Complete Stereo-Complexation Polylactic Acid Fiber and Its Hydrolysis Resistance. Sun M; Lu S; Zhao P; Feng Z; Yu M; Han K Molecules; 2022 Nov; 27(21):. PubMed ID: 36364481 [TBL] [Abstract][Full Text] [Related]
2. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator. Chang WW; Niu J; Peng H; Rong W Int J Biol Macromol; 2023 Dec; 253(Pt 5):127230. PubMed ID: 37797850 [TBL] [Abstract][Full Text] [Related]
3. Poly(lactic acid) stereocomplexes: A decade of progress. Tsuji H Adv Drug Deliv Rev; 2016 Dec; 107():97-135. PubMed ID: 27125192 [TBL] [Abstract][Full Text] [Related]
4. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects. Pan P; Han L; Bao J; Xie Q; Shan G; Bao Y J Phys Chem B; 2015 May; 119(21):6462-70. PubMed ID: 25940864 [TBL] [Abstract][Full Text] [Related]
5. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Tsuji H Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948 [TBL] [Abstract][Full Text] [Related]
6. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology. Bao J; Han L; Shan G; Bao Y; Pan P J Phys Chem B; 2015 Oct; 119(39):12689-98. PubMed ID: 26352621 [TBL] [Abstract][Full Text] [Related]
7. Stereo-complex crystallization of poly(lactic acid)s in block-copolymer phase separation. Uehara H; Karaki Y; Wada S; Yamanobe T ACS Appl Mater Interfaces; 2010 Oct; 2(10):2707-10. PubMed ID: 20836564 [TBL] [Abstract][Full Text] [Related]
8. The key role of unique crystalline property in the hydrolytic degradation process of microcrystalline cellulose-reinforced stereo-complexed poly(lactic acid) composites. Cheng Z; Wang Q; Lei L; Zhao B; Yu T; Fan J; Li Y Int J Biol Macromol; 2024 Aug; 275(Pt 1):133656. PubMed ID: 38969048 [TBL] [Abstract][Full Text] [Related]
9. Toward exclusive stereocomplex crystallization of high-molecular-weight poly(L-lactic acid)/poly(D-lactic acid) blends with outstanding heat resistance via incorporating selective nucleating agents. Wang L; Lu J; Zhang P; Su J; Han J Int J Biol Macromol; 2024 Mar; 262(Pt 1):129976. PubMed ID: 38331074 [TBL] [Abstract][Full Text] [Related]
10. Recent Advances in Processing of Stereocomplex-Type Polylactide. Bai H; Deng S; Bai D; Zhang Q; Fu Q Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 28898498 [TBL] [Abstract][Full Text] [Related]
11. A feasible strategy to balance the performance of stereo-complexed polylactide by incorporating poly(butylene adipate-co-terephthalate). Tong M; Ma B; Wang X; He Y; Yu J Int J Biol Macromol; 2023 Feb; 228():366-373. PubMed ID: 36581027 [TBL] [Abstract][Full Text] [Related]
12. Structure Mediation and Properties of Poly( Yang B; Wang R; Ma HL; Li X; BrĂ¼nig H; Dong Z; Qi Y; Zhang X Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961279 [TBL] [Abstract][Full Text] [Related]
13. Surface Modification of Poly(l-lactic acid) through Stereocomplexation with Enantiomeric Poly(d-lactic acid) and Its Copolymer. Zhu Q; Chang K; Qi L; Li X; Gao W; Gao Q Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34072033 [TBL] [Abstract][Full Text] [Related]
14. Synergistic effect of stereo-complexation and interfacial compatibility in ammonium polyphosphate grafted polylactic acid fibers for simultaneously improved toughness and flame retardancy. Zheng S; Li W; Chen Y; Yang H; Cai Y; Wang Q; Wei Q Int J Biol Macromol; 2024 Mar; 261(Pt 2):129943. PubMed ID: 38311135 [TBL] [Abstract][Full Text] [Related]
15. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Tsuji H; Tezuka Y Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428 [TBL] [Abstract][Full Text] [Related]
16. Morphological, thermal, rheological and mechanical properties of poly (butylene carbonate) reinforced by stereocomplex polylactide. Li Y; Han C; Yu Y; Huang D Int J Biol Macromol; 2019 Sep; 137():1169-1178. PubMed ID: 31301391 [TBL] [Abstract][Full Text] [Related]
17. Enhanced stereocomplex crystalline polylactic acids in melt processed enantiomeric bicomponent fiber configurations. Zhao R; Cai S; Zhao Y; Ning X Int J Biol Macromol; 2023 Dec; 253(Pt 5):127123. PubMed ID: 37774817 [TBL] [Abstract][Full Text] [Related]
18. High-expansion-ratio PLLA/PDLA/HNT composite foams with good thermally insulating property and enhanced compression performance via supercritical CO Wang Y; Guo F; Liao X; Li S; Yan Z; Zou F; Peng Q; Li G Int J Biol Macromol; 2023 May; 236():123961. PubMed ID: 36898452 [TBL] [Abstract][Full Text] [Related]
19. Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: Exploring the role of nanofibrillated stereocomplex polylactide crystals. Jalali A; Romero-Diez S; Nofar M; Park CB Int J Biol Macromol; 2021 Dec; 193(Pt B):2210-2220. PubMed ID: 34798187 [TBL] [Abstract][Full Text] [Related]
20. Polymorphic Crystallization and Crystalline Reorganization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture Influenced by Blending with Poly(vinylidene fluoride). Yu C; Han L; Bao J; Shan G; Bao Y; Pan P J Phys Chem B; 2016 Aug; 120(32):8046-54. PubMed ID: 27414064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]