These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36364522)

  • 1. Competition of Photo-Excitation and Photo-Desorption Induced Positive and Negative Photoconductivity Switch in Te Nanowires.
    Yin Y; Ling J; Wang L; Zhou W; Peng Y; Zhou Y; Tang D
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable Inverse Photoconductance in Semiconducting Nanowire Films.
    Wang R; Wang JL; Liu T; He Z; Wang H; Liu JW; Yu SH
    Adv Mater; 2022 Sep; 34(36):e2204698. PubMed ID: 35854411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous Photoelectrical Properties through Strain Engineering Based on a Single Bent InAsSb Nanowire.
    Yao X; Zhang X; Sun Q; Wei D; Chen P; Zou J
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5691-5698. PubMed ID: 33470805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the Photoresponse of InAs Nanowires.
    Alexander-Webber JA; Groschner CK; Sagade AA; Tainter G; Gonzalez-Zalba MF; Di Pietro R; Wong-Leung J; Tan HH; Jagadish C; Hofmann S; Joyce HJ
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43993-44000. PubMed ID: 29171260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing Environmental Sensitivity in SnSe-Based Metal-Semiconductor-Metal Devices: Unveiling Negative Photoconductivity for Enhanced Photodetector Performance and Humidity Sensing.
    Rani S; Das S; Siddiqui SA; Jain A; Rani D; Pahuja M; Chaudhary N; Afshan M; Ghosh R; Swadia D; Riyajuddin SK; Bera C; Ghosh K
    ACS Appl Mater Interfaces; 2024 May; 16(20):26899-26914. PubMed ID: 38741334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoconductivity Switching in MoTe
    Kim HJ; Lee KJ; Park J; Shin GH; Park H; Yu K; Choi SY
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38563-38569. PubMed ID: 32846468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching from Negative to Positive Photoconductivity toward Intrinsic Photoelectric Response in InAs Nanowire.
    Han Y; Fu M; Tang Z; Zheng X; Ji X; Wang X; Lin W; Yang T; Chen Q
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2867-2874. PubMed ID: 28049290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive and Negative Photoconductivity Conversion Induced by H
    Liu Y; Fu P; Yin Y; Peng Y; Yang W; Zhao G; Wang W; Zhou W; Tang D
    Nanoscale Res Lett; 2019 Apr; 14(1):144. PubMed ID: 31016402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant Persistent Photoconductivity of the WO3 Nanowires in Vacuum Condition.
    Huang K; Zhang Q
    Nanoscale Res Lett; 2011 Dec; 6(1):52. PubMed ID: 27502674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot Carrier Trapping Induced Negative Photoconductance in InAs Nanowires toward Novel Nonvolatile Memory.
    Yang Y; Peng X; Kim HS; Kim T; Jeon S; Kang HK; Choi W; Song J; Doh YJ; Yu D
    Nano Lett; 2015 Sep; 15(9):5875-82. PubMed ID: 26226506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining negative photoconductivity and resistive switching towards in-memory logic operations.
    Paramanik S; Pal AJ
    Nanoscale; 2023 Mar; 15(10):5001-5010. PubMed ID: 36786743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires.
    Bao J; Shalish I; Su Z; Gurwitz R; Capasso F; Wang X; Ren Z
    Nanoscale Res Lett; 2011 May; 6(1):404. PubMed ID: 21711938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires.
    Prades JD; Hernandez-Ramirez F; Jimenez-Diaz R; Manzanares M; Andreu T; Cirera A; Romano-Rodriguez A; Morante JR
    Nanotechnology; 2008 Nov; 19(46):465501. PubMed ID: 21836244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocurrent modulation under dual excitation in individual GaN nanowires.
    Yadav S; Deb S; Gupta KD; Dhar S
    Nanoscale; 2018 Jul; 10(26):12480-12486. PubMed ID: 29926866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive and negative photoconductivity characteristics in CsPbBr
    Jin H; Chen Y; Zhang L; Wan R; Zou Z; Li H; Gao Y
    Nanotechnology; 2021 Feb; 32(8):085202. PubMed ID: 33157541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Growth of GeS Nanowires with Sulfur-Rich Shell for Featured Negative Photoconductivity.
    Zhao S; Sun J; Yin Y; Guo Y; Liu D; Miao C; Feng X; Wang Y; Xu M; Yang ZX
    J Phys Chem Lett; 2021 Apr; 12(12):3046-3052. PubMed ID: 33739121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity.
    Liu JW; Zhu JH; Zhang CL; Liang HW; Yu SH
    J Am Chem Soc; 2010 Jul; 132(26):8945-52. PubMed ID: 20545345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband Negative Photoconductive Response in Carbon Nanodots.
    Qin JX; Shen CL; Li L; Liu H; Zhang WY; Yang XG; Shan CX
    Adv Mater; 2024 Aug; 36(32):e2404694. PubMed ID: 38857532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.
    Boland JL; Casadei A; Tütüncüoglu G; Matteini F; Davies CL; Jabeen F; Joyce HJ; Herz LM; Fontcuberta I Morral A; Johnston MB
    ACS Nano; 2016 Apr; 10(4):4219-27. PubMed ID: 26959350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CsPbX
    He Q; Chen G; Wang Y; Liu X; Xu D; Xu X; Liu Y; Bao J; Wang X
    Small; 2021 Jul; 17(28):e2101403. PubMed ID: 34106510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.