These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 36364592)

  • 1. Ultrafast Charge Carrier Dynamics in InP/ZnSe/ZnS Core/Shell/Shell Quantum Dots.
    Zeng S; Li Z; Tan W; Si J; Li Y; Hou X
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative Trion Auger Recombination in Highly Luminescent InP/ZnSe/ZnS Quantum Dots.
    Kim T; Won YH; Jang E; Kim D
    Nano Lett; 2021 Mar; 21(5):2111-2116. PubMed ID: 33635669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast Electron Transfer in InP/ZnSe/ZnS Quantum Dots for Photocatalytic Hydrogen Evolution.
    Zeng S; Tan W; Si J; Mao L; Shi J; Li Y; Hou X
    J Phys Chem Lett; 2022 Oct; 13(39):9096-9102. PubMed ID: 36154010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppressed Auger recombination and enhanced emission of InP/ZnSe/ZnS quantum dots through inner shell manipulation.
    Chen Y; Wang R; Kuang Y; Bian Y; Chen F; Shen H; Chi Z; Ran X; Guo L
    Nanoscale; 2023 Nov; 15(46):18920-18927. PubMed ID: 37975758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning Hot Carrier Dynamics of InP/ZnSe/ZnS Quantum Dots by Shell Morphology Control.
    Park J; Won YH; Han Y; Kim HM; Jang E; Kim D
    Small; 2022 Feb; 18(8):e2105492. PubMed ID: 34889031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots.
    Liu J; Yue S; Zhang H; Wang C; Barba D; Vidal F; Sun S; Wang ZM; Bao J; Zhao H; Selopal GS; Rosei F
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34797-34808. PubMed ID: 37433096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing the Energy Gap between Band-Edge and Trap States Slows Down Picosecond Carrier Trapping in Highly Luminescent InP/ZnSe/ZnS Quantum Dots.
    Sung YM; Kim TG; Yun DJ; Lim M; Ko DS; Jung C; Won N; Park S; Jeon WS; Lee HS; Kim JH; Jun S; Sul S; Hwang S
    Small; 2021 Dec; 17(52):e2102792. PubMed ID: 34636144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Brightness Matched Indium Phosphide Quantum Dots.
    Toufanian R; Chern M; Kong VH; Dennis AM
    Chem Mater; 2021 Mar; 33(6):1964-1975. PubMed ID: 34219920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Charging Effect on the Optical Properties of InP/ZnSe/ZnS Quantum Dots.
    Park J; Won YH; Kim T; Jang E; Kim D
    Small; 2020 Oct; 16(41):e2003542. PubMed ID: 32964676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-Shell-Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Light-Emitting Diodes.
    Wu Q; Cao F; Wang S; Wang Y; Sun Z; Feng J; Liu Y; Wang L; Cao Q; Li Y; Wei B; Wong WY; Yang X
    Adv Sci (Weinh); 2022 Jul; 9(21):e2200959. PubMed ID: 35618484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Blue and Highly Emissive ZnS-Passivated InP QDs: Facile Synthesis, Characterization, and Deciphering of Their Ultrafast-to-Slow Photodynamics.
    Rakshit S; Cohen B; GutiƩrrez M; El-Ballouli AO; Douhal A
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3099-3111. PubMed ID: 36608171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-Shelled InP/ZnMnS/ZnS Quantum Dots for Light-Emitting Devices.
    Zhang W; Zhuang W; Liu R; Xing X; Qu X; Liu H; Xu B; Wang K; Sun XW
    ACS Omega; 2019 Nov; 4(21):18961-18968. PubMed ID: 31763517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppressing the Cation Exchange at the Core/Shell Interface of InP Quantum Dots by a Selenium Shielding Layer Enables Efficient Green Light-Emitting Diodes.
    Sun Z; Wu Q; Wang S; Cao F; Wang Y; Li L; Wang H; Kong L; Yan L; Yang X
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15401-15406. PubMed ID: 35316038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biexciton and trion dynamics in InP/ZnSe/ZnS quantum dots.
    Sun H; Cavanaugh P; Jen-La Plante I; Ippen C; Bautista M; Ma R; Kelley DF
    J Chem Phys; 2022 Feb; 156(5):054703. PubMed ID: 35135281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZnF
    Li H; Zhang W; Bian Y; Ahn TK; Shen H; Ji B
    Nano Lett; 2022 May; 22(10):4067-4073. PubMed ID: 35536635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of indium alloying on the charge carrier dynamics of thick-shell InP/ZnSe quantum dots.
    Freymeyer NJ; Click SM; Reid KR; Chisholm MF; Bradsher CE; McBride JR; Rosenthal SJ
    J Chem Phys; 2020 Apr; 152(16):161104. PubMed ID: 32357779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of trifluoroacetic acid on InP/ZnSe/ZnS quantum dots: mimicking the surface trap and their effects on the photophysical properties.
    Sung YM; Kim TG; Yun DJ; Chae BG; Park H; Lee HS; Kim JH; Jun S; Sul S
    RSC Adv; 2023 Sep; 13(40):28160-28164. PubMed ID: 37753393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP-ZnSe Quantum Dots.
    Reid KR; McBride JR; Freymeyer NJ; Thal LB; Rosenthal SJ
    Nano Lett; 2018 Feb; 18(2):709-716. PubMed ID: 29282985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer.
    Liu N; Xu L; Wang H; Xu J; Su W; Ma Z; Chen K
    Luminescence; 2014 Dec; 29(8):1095-101. PubMed ID: 24898670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition Layer Assisted Synthesis of Defect Free Amine-Phosphine Based InP QDs.
    Wang J; Ba G; Meng J; Yang S; Tian S; Zhang M; Huang F; Zheng K; Pullerits T; Tian J
    Nano Lett; 2024 Jul; 24(29):8894-8901. PubMed ID: 38990690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.