These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36364618)

  • 1. Large Area Patterning of Highly Reproducible and Sensitive SERS Sensors Based on 10-nm Annular Gap Arrays.
    Luo S; Mancini A; Lian E; Xu W; Berté R; Li Y
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique.
    Fu Q; Zhan Z; Dou J; Zheng X; Xu R; Wu M; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13322-8. PubMed ID: 26023763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.
    Cai H; Meng Q; Zhao H; Li M; Dai Y; Lin Y; Ding H; Pan N; Tian Y; Luo Y; Wang X
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20189-20195. PubMed ID: 29799180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UV-Nanoimprint Lithography for Predefined SERS Nanopatterns Which Are Reproducible at Low Cost and High Throughput.
    Milenko K; Dullo FT; Thrane PCV; Skokic Z; Dirdal CA
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Fabrication of Triangular Nanogap Arrays for Surface-Enhanced Raman Spectroscopy.
    Luo S; Mancini A; Wang F; Liu J; Maier SA; de Mello JC
    ACS Nano; 2022 May; 16(5):7438-7447. PubMed ID: 35381178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes.
    Quero G; Zito G; Managò S; Galeotti F; Pisco M; De Luca AC; Cusano A
    Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced Raman Scattering of Au-Ag bimetallic nanopillars fabricated using surface-plasmon lithography.
    Fan Y; Zhang T; Cai Z; Li D; Yue W; Gong T; Luo Y; Gao P
    Nanotechnology; 2022 Apr; 33(25):. PubMed ID: 35290967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Massively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Level.
    Luo S; Mancini A; Berté R; Hoff BH; Maier SA; de Mello JC
    Adv Mater; 2021 May; 33(20):e2100491. PubMed ID: 33939199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step fabrication of sub-10-nm plasmonic nanogaps for reliable SERS sensing of microorganisms.
    Chen J; Qin G; Wang J; Yu J; Shen B; Li S; Ren Y; Zuo L; Shen W; Das B
    Biosens Bioelectron; 2013 Jun; 44():191-7. PubMed ID: 23428732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-standing Ag triangle arrays a configurable vertical gap for surface enhanced Raman spectroscopy.
    Li K; Wang Y; Jiang K; Ren Y; Dai Y; Lu Y; Wang P
    Nanotechnology; 2017 Sep; 28(38):385401. PubMed ID: 28628485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate.
    Zhang C; Yi P; Peng L; Lai X; Chen J; Huang M; Ni J
    Sci Rep; 2017 Jan; 7():39814. PubMed ID: 28051175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO
    Liu X; Kitamura K; Yu Q; Xu J; Osada M; Takahiro N; Li J; Cao G
    Sci Technol Adv Mater; 2013 Oct; 14(5):055011. PubMed ID: 27877618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly uniform and reproducible surface enhanced Raman scattering on air-stable metallic glassy nanowire array.
    Liu X; Shao Y; Tang Y; Yao KF
    Sci Rep; 2014 Jul; 4():5835. PubMed ID: 25060646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering.
    Mu C; Zhang JP; Xu D
    Nanotechnology; 2010 Jan; 21(1):015604. PubMed ID: 19946166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.
    Ni H; Wang M; Shen T; Zhou J
    ACS Nano; 2015 Feb; 9(2):1913-25. PubMed ID: 25639937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering.
    Li K; Wang Y; Jiang K; Ren Y; Dai Y; Lu Y; Wang P
    Nanotechnology; 2016 Dec; 27(49):495402. PubMed ID: 27827351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Hybrid Nanostructural Arrays to Manipulate SERS-Active Substrates by Nanosphere Lithography.
    Zhao X; Wen J; Zhang M; Wang D; Wang Y; Chen L; Zhang Y; Yang J; Du Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7710-7716. PubMed ID: 28191921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection.
    Deng Y; Idso MN; Galvan DD; Yu Q
    Anal Chim Acta; 2015 Mar; 863():41-8. PubMed ID: 25732311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniform Periodic Bowtie SERS Substrate with Narrow Nanogaps Obtained by Monitored Pulsed Electrodeposition.
    Yao X; Jiang S; Luo S; Liu BW; Huang TX; Hu S; Zhu J; Wang X; Ren B
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36505-36512. PubMed ID: 32686400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wafer-Scale and Cost-Effective Manufacturing of Controllable Nanogap Arrays for Highly Sensitive SERS Sensing.
    Zhao Q; Yang H; Nie B; Luo Y; Shao J; Li G
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3580-3590. PubMed ID: 34983178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.