These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 36364637)

  • 1. A Core-Shell Approach for Systematically Coarsening Nanoparticle-Membrane Interactions: Application to Silver Nanoparticles.
    Singhal A; Sevink GJA
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of size and nature in nanoparticle binding to a model lung membrane: an atomistic study.
    Singhal A; Agur Sevink GJ
    Nanoscale Adv; 2021 Nov; 3(23):6635-6648. PubMed ID: 36132649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adhesion, intake, and release of nanoparticles by lipid bilayers.
    Burgess S; Wang Z; Vishnyakov A; Neimark AV
    J Colloid Interface Sci; 2020 Mar; 561():58-70. PubMed ID: 31812867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent interaction of hydrophilic/hydrophobic ligand functionalized cationic and anionic nanoparticles with lipid bilayers.
    Kumar Basak U; Roobala C; Basu JK; Maiti PK
    J Phys Condens Matter; 2020 Mar; 32(10):104003. PubMed ID: 31722322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides.
    Yan Z; Wu Z; Li S; Zhang X; Yi X; Yue T
    Nanoscale; 2019 Nov; 11(42):19751-19762. PubMed ID: 31384870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes.
    Xiong K; Zhao J; Yang D; Cheng Q; Wang J; Ji H
    Soft Matter; 2017 Jul; 13(26):4644-4652. PubMed ID: 28650048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal-controlled cellular uptake of "hot" nanoparticles.
    Chen H; Dong X; Ou L; Ma C; Yuan B; Yang K
    Nanoscale; 2023 Aug; 15(30):12718-12727. PubMed ID: 37470374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale Modelling of Bionano Interface.
    Lopez H; Brandt EG; Mirzoev A; Zhurkin D; Lyubartsev A; Lobaskin V
    Adv Exp Med Biol; 2017; 947():173-206. PubMed ID: 28168669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unusual pathway for the membrane wrapping of rodlike nanoparticles and the orientation- and membrane wrapping-dependent nanoparticle interaction.
    Yue T; Wang X; Huang F; Zhang X
    Nanoscale; 2013 Oct; 5(20):9888-96. PubMed ID: 23979098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand Lipophilicity Determines Molecular Mechanisms of Nanoparticle Adsorption to Lipid Bilayers.
    Huang-Zhu CA; Sheavly JK; Chew AK; Patel SJ; Van Lehn RC
    ACS Nano; 2024 Feb; 18(8):6424-6437. PubMed ID: 38354368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications.
    Maurer EI; Sharma M; Schlager JJ; Hussain SM
    Nanotoxicology; 2014 Nov; 8(7):718-27. PubMed ID: 23848466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wrapping of nanoparticles by the cell membrane: the role of interactions between the nanoparticles.
    Tang H; Ye H; Zhang H; Zheng Y
    Soft Matter; 2015 Nov; 11(44):8674-83. PubMed ID: 26381589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine.
    Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A
    J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized nanoparticle interactions with polymeric membranes.
    Ladner DA; Steele M; Weir A; Hristovski K; Westerhoff P
    J Hazard Mater; 2012 Apr; 211-212():288-95. PubMed ID: 22177020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles.
    Manshian BB; Pfeiffer C; Pelaz B; Heimerl T; Gallego M; Möller M; del Pino P; Himmelreich U; Parak WJ; Soenen SJ
    ACS Nano; 2015 Oct; 9(10):10431-44. PubMed ID: 26327399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.
    Gkeka P; Angelikopoulos P; Sarkisov L; Cournia Z
    PLoS Comput Biol; 2014 Dec; 10(12):e1003917. PubMed ID: 25474252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxicity, Accumulation and Translocation of Silver and Silver Sulfide Nanoparticles in contact with Rainbow Trout Intestinal Cells.
    Opršal J; Knotek P; Zickler GA; Sigg L; Schirmer K; Pouzar M; Geppert M
    Aquat Toxicol; 2021 Aug; 237():105869. PubMed ID: 34082272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MD simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field.
    Shimizu K; Nakamura H; Watano S
    Nanoscale; 2016 Jun; 8(23):11897-906. PubMed ID: 27241464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.