These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36364674)
21. The influence of electrochemical cycling protocols on capacity loss in nickel-rich lithium-ion batteries. Dose WM; Morzy JK; Mahadevegowda A; Ducati C; Grey CP; De Volder MFL J Mater Chem A Mater; 2021 Oct; 9(41):23582-23596. PubMed ID: 34765222 [TBL] [Abstract][Full Text] [Related]
22. Enhanced Cycling Performance of Ni-Rich Positive Electrodes (NMC) in Li-Ion Batteries by Reducing Electrolyte Free-Solvent Activity. Tatara R; Yu Y; Karayaylali P; Chan AK; Zhang Y; Jung R; Maglia F; Giordano L; Shao-Horn Y ACS Appl Mater Interfaces; 2019 Sep; 11(38):34973-34988. PubMed ID: 31433154 [TBL] [Abstract][Full Text] [Related]
23. Interface design for all-solid-state lithium batteries. Wan H; Wang Z; Zhang W; He X; Wang C Nature; 2023 Nov; 623(7988):739-744. PubMed ID: 37880366 [TBL] [Abstract][Full Text] [Related]
24. Improvement of the Electrochemical Performance of LiNi Akella SH; Taragin S; Wang Y; Aviv H; Kozen AC; Zysler M; Wang L; Sharon D; Lee SB; Noked M ACS Appl Mater Interfaces; 2021 Dec; 13(51):61733-61741. PubMed ID: 34904822 [TBL] [Abstract][Full Text] [Related]
25. Electrolyte design for Li-ion batteries under extreme operating conditions. Xu J; Zhang J; Pollard TP; Li Q; Tan S; Hou S; Wan H; Chen F; He H; Hu E; Xu K; Yang XQ; Borodin O; Wang C Nature; 2023 Feb; 614(7949):694-700. PubMed ID: 36755091 [TBL] [Abstract][Full Text] [Related]
26. Artificial Layer Construction via Cosolvent Enables Stable Ni-Rich Cathodes for Enhanced Lithium Storage. Pan X; Liu T; Hou Q ACS Appl Mater Interfaces; 2024 Mar; 16(12):14922-14928. PubMed ID: 38470147 [TBL] [Abstract][Full Text] [Related]
27. Onset Potential for Electrolyte Oxidation and Ni-Rich Cathode Degradation in Lithium-Ion Batteries. Dose WM; Li W; Temprano I; O'Keefe CA; Mehdi BL; De Volder MFL; Grey CP ACS Energy Lett; 2022 Oct; 7(10):3524-3530. PubMed ID: 36277132 [TBL] [Abstract][Full Text] [Related]
29. Probing Depth-Dependent Transition-Metal Redox of Lithium Nickel, Manganese, and Cobalt Oxides in Li-Ion Batteries. Yu Y; Karayaylali P; Giordano L; Corchado-García J; Hwang J; Sokaras D; Maglia F; Jung R; Gittleson FS; Shao-Horn Y ACS Appl Mater Interfaces; 2020 Dec; 12(50):55865-55875. PubMed ID: 33283495 [TBL] [Abstract][Full Text] [Related]
30. 3D High-Resolution Chemical Characterization of Sputtered Li-Rich NMC811 Thin Films Using TOF-SIMS. Priebe A; Aribia A; Sastre J; Romanyuk YE; Michler J Anal Chem; 2023 Jan; 95(2):1074-1084. PubMed ID: 36534635 [TBL] [Abstract][Full Text] [Related]
31. Stability Enhancement and Microstructural Modification of Ni-Rich Cathodes via Halide Doping. Azhari L; Sousa B; Ahmed R; Wang R; Yang Z; Gao G; Han Y; Wang Y ACS Appl Mater Interfaces; 2022 Oct; 14(41):46523-46536. PubMed ID: 36206402 [TBL] [Abstract][Full Text] [Related]
32. Cycle-Induced Interfacial Degradation and Transition-Metal Cross-Over in LiNi Björklund E; Xu C; Dose WM; Sole CG; Thakur PK; Lee TL; De Volder MFL; Grey CP; Weatherup RS Chem Mater; 2022 Mar; 34(5):2034-2048. PubMed ID: 35557994 [TBL] [Abstract][Full Text] [Related]
33. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Xu C; Märker K; Lee J; Mahadevegowda A; Reeves PJ; Day SJ; Groh MF; Emge SP; Ducati C; Layla Mehdi B; Tang CC; Grey CP Nat Mater; 2021 Jan; 20(1):84-92. PubMed ID: 32839589 [TBL] [Abstract][Full Text] [Related]
34. Multifunctional Electrolyte Additive Stabilizes Electrode-Electrolyte Interface Layers for High-Voltage Lithium Metal Batteries. Liu Y; Hong L; Jiang R; Wang Y; Patel SV; Feng X; Xiang H ACS Appl Mater Interfaces; 2021 Dec; 13(48):57430-57441. PubMed ID: 34841850 [TBL] [Abstract][Full Text] [Related]
35. Role of Salt Concentration in Stabilizing Charged Ni-Rich Cathode Interfaces in Li-Ion Batteries. Phelan CME; Björklund E; Singh J; Fraser M; Didwal PN; Rees GJ; Ruff Z; Ferrer P; Grinter DC; Grey CP; Weatherup RS Chem Mater; 2024 Apr; 36(7):3334-3344. PubMed ID: 38617803 [TBL] [Abstract][Full Text] [Related]
36. Elevated Electrochemical Performance of LiNi Arockia Shyamala Paniyarasi S; Padmaja S; Pushpa Selvi M; Gnanamuthu RM; Nimma Elizabeth R J Nanosci Nanotechnol; 2021 Dec; 21(12):6227-6233. PubMed ID: 34229825 [TBL] [Abstract][Full Text] [Related]
37. Li-Nb-O Coating/Substitution Enhances the Electrochemical Performance of the LiNi Xin F; Zhou H; Chen X; Zuba M; Chernova N; Zhou G; Whittingham MS ACS Appl Mater Interfaces; 2019 Sep; 11(38):34889-34894. PubMed ID: 31466439 [TBL] [Abstract][Full Text] [Related]
38. Synthesis Method for Long Cycle Life Lithium-Ion Cathode Material: Nickel-Rich Core-Shell LiNi Li Q; Dang R; Chen M; Lee Y; Hu Z; Xiao X ACS Appl Mater Interfaces; 2018 May; 10(21):17850-17860. PubMed ID: 29733197 [TBL] [Abstract][Full Text] [Related]
39. From Coating to Dopant: How the Transition Metal Composition Affects Alumina Coatings on Ni-Rich Cathodes. Han B; Key B; Lapidus SH; Garcia JC; Iddir H; Vaughey JT; Dogan F ACS Appl Mater Interfaces; 2017 Nov; 9(47):41291-41302. PubMed ID: 29091400 [TBL] [Abstract][Full Text] [Related]
40. Constructing a Low-Impedance Interface on a High-Voltage LiNi Li G; Liao Y; Li Z; Xu N; Lu Y; Lan G; Sun G; Li W ACS Appl Mater Interfaces; 2020 Aug; 12(33):37013-37026. PubMed ID: 32700895 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]