These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36364940)

  • 1. An In Silico Framework to Mine Bioactive Peptides from Annotated Proteomes: A Case Study on Pancreatic Alpha Amylase Inhibitory Peptides from Algae and Cyanobacteria.
    Pedroni L; Perugino F; Galaverna G; Dall'Asta C; Dellafiora L
    Nutrients; 2022 Nov; 14(21):. PubMed ID: 36364940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgae biofilm formation and antioxidant responses to stress induce by Lemna minor L., Chlorella vulgaris, and Aphanizomenon flos-aquae.
    Ugya AY; Ari HA; Hua X
    Ecotoxicol Environ Saf; 2021 Sep; 221():112468. PubMed ID: 34198191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational in silico design of novel α-glucosidase inhibitory peptides and in vitro evaluation of promising candidates.
    Ibrahim MA; Bester MJ; Neitz AW; Gaspar ARM
    Biomed Pharmacother; 2018 Nov; 107():234-242. PubMed ID: 30096627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a workflow for screening and identification of α-amylase inhibitory peptides from food source using an integrated Bioinformatics-phage display approach: Case study - Cumin seed.
    Siow HL; Lim TS; Gan CY
    Food Chem; 2017 Jan; 214():67-76. PubMed ID: 27507449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and structure prediction of amylases from Chlorella vulgaris.
    Ben Hlima H; Karray A; Dammak M; Elleuch F; Michaud P; Fendri I; Abdelkafi S
    Environ Sci Pollut Res Int; 2021 Oct; 28(37):51046-51059. PubMed ID: 33973124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris.
    Xu Q; Yang L; Yang W; Bai Y; Hou P; Zhao J; Zhou L; Zuo Z
    Ecotoxicol Environ Saf; 2017 Jan; 135():191-200. PubMed ID: 27741460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV.
    Mojica L; Chen K; de Mejía EG
    J Food Sci; 2015 Jan; 80(1):H188-98. PubMed ID: 25495131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Pinto bean peptides with inhibitory effects on α-amylase and angiotensin converting enzyme (ACE) activities using an integrated bioinformatics-assisted approach.
    Ngoh YY; Gan CY
    Food Chem; 2018 Nov; 267():124-131. PubMed ID: 29934146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a novel α-amylase inhibitory activity peptide from quinoa protein hydrolysate.
    Zhou H; Safdar B; Li H; Yang L; Ying Z; Liu X
    Food Chem; 2023 Mar; 403():134434. PubMed ID: 36358076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Bioactive Peptides with α-Amylase Inhibitory Potential from Enzymatic Protein Hydrolysates of Red Seaweed (Porphyra spp).
    Admassu H; Gasmalla MAA; Yang R; Zhao W
    J Agric Food Chem; 2018 May; 66(19):4872-4882. PubMed ID: 29667406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto).
    Ngoh YY; Gan CY
    Food Chem; 2016 Jan; 190():331-337. PubMed ID: 26212978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic and linear peptides derived from alpha-amylase inhibitory protein tendamistat.
    Ono S; Umezaki M; Tojo N; Hashimoto S; Taniyama H; Kaneko T; Fujii T; Morita H; Shimasaki C; Yamazaki I; Yoshimura T; Kato T
    J Biochem; 2001 May; 129(5):783-90. PubMed ID: 11328602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant, pancreatic lipase, and α-amylase inhibitory properties of oat bran hydrolyzed proteins and peptides.
    Esfandi R; Seidu I; Willmore W; Tsopmo A
    J Food Biochem; 2022 Apr; 46(4):e13762. PubMed ID: 33997997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycosporine-like Amino Acids and Other Phytochemicals Directly Detected by High-Resolution NMR on Klamath (Aphanizomenon flos-aquae) Blue-Green Algae.
    Righi V; Parenti F; Schenetti L; Mucci A
    J Agric Food Chem; 2016 Sep; 64(35):6708-15. PubMed ID: 27537083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marine Peptides as Potential Agents for the Management of Type 2 Diabetes Mellitus-A Prospect.
    Xia EQ; Zhu SS; He MJ; Luo F; Fu CZ; Zou TB
    Mar Drugs; 2017 Mar; 15(4):. PubMed ID: 28333091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of kintoki bean (Phaseolus vulgaris) alpha-amylase inhibitor: inhibitory activities against human salivary and porcine pancreatic alpha-amylases and activity changes by proteolytic digestion.
    Yoshikawa H; Kotaru M; Tanaka C; Ikeuchi T; Kawabata M
    J Nutr Sci Vitaminol (Tokyo); 1999 Dec; 45(6):797-802. PubMed ID: 10737233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction and identification of α-amylase inhibitor peptides from Nephelium lappacheum and Nephelium mutabile seed protein using gastro-digestive enzymes.
    Evaristus NA; Wan Abdullah WN; Gan CY
    Peptides; 2018 Apr; 102():61-67. PubMed ID: 29510154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical profiling of secondary metabolites from Himatanthus drasticus (Mart.) Plumel latex with inhibitory action against the enzymes α-amylase and α-glucosidase: In vitro and in silico assays.
    Morais FS; Canuto KM; Ribeiro PRV; Silva AB; Pessoa ODL; Freitas CDT; Alencar NMN; Oliveira AC; Ramos MV
    J Ethnopharmacol; 2020 May; 253():112644. PubMed ID: 32058007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of novel α-amylase and α-glucosidase inhibitory peptides from camel whey proteins.
    Baba WN; Mudgil P; Kamal H; Kilari BP; Gan CY; Maqsood S
    J Dairy Sci; 2021 Feb; 104(2):1364-1377. PubMed ID: 33309363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-targeted metabolomic profiling of filamentous cyanobacteria Aphanizomenon flos-aquae exposed to a concentrated culture filtrate of Microcystis aeruginosa.
    Jin H; Ma H; Gan N; Wang H; Li Y; Wang L; Song L
    Harmful Algae; 2022 Jan; 111():102170. PubMed ID: 35016758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.