These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36365409)

  • 1. Performance of the Improved Priestley-Taylor Model for Simulating Evapotranspiration of Greenhouse Tomato at Different Growth Stages.
    Gong X; Bo G; Liu H; Ge J; Li X; Gao S
    Plants (Basel); 2022 Nov; 11(21):. PubMed ID: 36365409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Modeling evapotranspiration of greenhouse tomato under different water conditions based on the dual crop coefficient method].
    Gong XW; Liu H; Sun JS; Ma XJ; Wang WN; Cui YS
    Ying Yong Sheng Tai Xue Bao; 2017 Apr; 28(4):1255-1264. PubMed ID: 29741323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model.
    Ge J; Zhao L; Yu Z; Liu H; Zhang L; Gong X; Sun H
    Plants (Basel); 2022 Jul; 11(15):. PubMed ID: 35893626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of maize evapotraspiration under drought stress - A case study of Huaibei Plain, China.
    Yuan H; Cui Y; Ning S; Jiang S; Yuan X; Tang G
    PLoS One; 2019; 14(11):e0223756. PubMed ID: 31689311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective Method of Estimating the Daily Evapotranspiration of Greenhouse Grapes in the Cold Area of Northeast China.
    Jiang S; Xinguang Wei ; Pei D; Zheng S; Fu S; Wang T
    ACS Omega; 2022 May; 7(18):15666-15680. PubMed ID: 35571847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing Daily Evapotranspiration Methodologies from One-Time-of-Day sUAS and EC Information in the
    Nassar A; Torres-Rua A; Kustas W; Alfieri J; Hipps L; Prueger J; Nieto H; Alsina MM; White W; McKee L; Coopmans C; Sanchez L; Dokoozlian N
    Remote Sens (Basel); 2021 Aug; 13(15):2887. PubMed ID: 35003785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hysteresis responses of evapotranspiration to meteorological factors at a diel timescale: patterns and causes.
    Zheng H; Wang Q; Zhu X; Li Y; Yu G
    PLoS One; 2014; 9(6):e98857. PubMed ID: 24896829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Estimation model for water requirement of greenhouse tomato under drip irrigation].
    Liu H; Sun JS; Liang YY; Wang CC; Duan AW
    Ying Yong Sheng Tai Xue Bao; 2011 May; 22(5):1201-6. PubMed ID: 21812295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive Regimes of Reduced Irrigation and Salt Stress Depressed Tomato Water Use Efficiency at Leaf and Plant Scales by Affecting Leaf Physiology and Stem Sap Flow.
    Yang H; Shukla MK; Mao X; Kang S; Du T
    Front Plant Sci; 2019; 10():160. PubMed ID: 30873187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Parameter estimation and verification of DSSAT-CROPGRO-Tomato model under different irrigation levels in greenhouse.].
    Zhao ZL; Li B; Feng X; Yao MZ; Xie Y; Xing JW; Li CX
    Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):2017-2027. PubMed ID: 29974713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of regulated deficit irrigation applied at different growth stages of greenhouse grown tomato on substrate moisture, yield, fruit quality, and physiological traits.
    Ghannem A; Ben Aissa I; Majdoub R
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):46553-46564. PubMed ID: 32803589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IoT-Based Sensor Data Fusion for Determining Optimality Degrees of Microclimate Parameters in Commercial Greenhouse Production of Tomato.
    Rezvani SM; Abyaneh HZ; Shamshiri RR; Balasundram SK; Dworak V; Goodarzi M; Sultan M; Mahns B
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33198414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root Distribution of Tomato Cultivated in Greenhouse under Different Ventilation and Water Conditions.
    Ge J; Liu H; Gong X; Yu Z; Li L; Li Y
    Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Greenhouse tomato transpiration and its affecting factors: correlation analysis and model simulation].
    Yao YZ; Li JM; Zhang R; Sun SJ; Chen KL
    Ying Yong Sheng Tai Xue Bao; 2012 Jul; 23(7):1869-74. PubMed ID: 23173461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.
    Liu X; Wang S; Xue H; Singh VP
    PLoS One; 2015; 10(10):e0139839. PubMed ID: 26439928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China.
    Chang X; Zhao W; Zeng F
    Environ Monit Assess; 2015 Nov; 187(11):699. PubMed ID: 26497559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking plant and soil indices for water stress management in black gram.
    Khorsand A; Rezaverdinejad V; Asgarzadeh H; Majnooni-Heris A; Rahimi A; Besharat S; Sadraddini AA
    Sci Rep; 2021 Jan; 11(1):869. PubMed ID: 33441705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Evapotranspiration of winter wheat field on Loess Plateau tableland].
    Gan Z; Liu W
    Ying Yong Sheng Tai Xue Bao; 2006 Aug; 17(8):1435-8. PubMed ID: 17066698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Fourteen Reference Evapotranspiration Models With Lysimeter Measurements at a Site in the Humid Alpine Meadow, Northeastern Qinghai-Tibetan Plateau.
    Dai L; Fu R; Zhao Z; Guo X; Du Y; Hu Z; Cao G
    Front Plant Sci; 2022; 13():854196. PubMed ID: 35574067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and Growth Responses of Potato (
    Zhang P; Yang X; Manevski K; Li S; Wei Z; Andersen MN; Liu F
    Plants (Basel); 2022 Apr; 11(9):. PubMed ID: 35567127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.