These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36365525)

  • 1. Conformation and Structure of Hydroxyethyl Cellulose Ether with a Wide Range of Average Molar Masses in Aqueous Solutions.
    Yoshida M; Iwase H; Shikata T
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and Conformation of Hydroxypropylmethyl Cellulose with a Wide Range of Molar Masses in Aqueous Solution─Effects of Hydroxypropyl Group Addition.
    Saiki E; Iwase H; Horikawa Y; Shikata T
    Biomacromolecules; 2023 Sep; 24(9):4199-4207. PubMed ID: 37594913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of a Rod-like Structure for Hydroxypropyl Cellulose Samples in Aqueous Solution.
    Yoshida M; Iwase H; Horikawa Y; Shikata T
    Biomacromolecules; 2024 Jul; 25(7):4255-4266. PubMed ID: 38814246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elongated Rodlike Particle Formation of Methyl Cellulose in Aqueous Solution.
    Saiki E; Yoshida M; Kurahashi K; Iwase H; Shikata T
    ACS Omega; 2022 Aug; 7(33):28849-28859. PubMed ID: 36033728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rigid Rod-like Viscoelastic Behaviors of Methyl Cellulose Samples with a Wide Range of Molar Masses Dissolved in Aqueous Solutions.
    Nakagawa D; Saiki E; Horikawa Y; Shikata T
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of Long Two-Dimensional Folding Chain Structure Formation of Poly(vinylidene fluoride) in
    Saiki E; Nohara Y; Iwase H; Shikata T
    ACS Omega; 2022 Jul; 7(26):22825-22829. PubMed ID: 35811863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconsideration of the conformation of methyl cellulose and hydroxypropyl methyl cellulose ethers in aqueous solution.
    Arai K; Horikawa Y; Shikata T; Iwase H
    RSC Adv; 2020 May; 10(32):19059-19066. PubMed ID: 35518322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Concept for Interpretation of the Viscoelastic Behavior of Aqueous Sodium Carboxymethyl Cellulose Systems.
    Yoshida M; Nakagawa D; Hozumi H; Horikawa Y; Makino S; Nakamura H; Shikata T
    Biomacromolecules; 2024 Jun; 25(6):3420-3431. PubMed ID: 38733614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration/Dehydration Behavior of Hydroxyethyl Cellulose Ether in Aqueous Solution.
    Arai K; Shikata T
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33076298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic behavior of high molar mass linear polyglycidol in dilute aqueous solution.
    Rangelov S; Trzebicka B; Jamroz-Piegza M; Dworak A
    J Phys Chem B; 2007 Sep; 111(38):11127-33. PubMed ID: 17803304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordering of lipid A-monophosphate clusters in aqueous solutions.
    Faunce CA; Reichelt H; Quitschau P; Paradies HH
    J Chem Phys; 2007 Sep; 127(11):115103. PubMed ID: 17887884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic Diffusion and Phase Behavior of Cellulose Nanocrystal Suspensions.
    Van Rie J; Schütz C; Gençer A; Lombardo S; Gasser U; Kumar S; Salazar-Alvarez G; Kang K; Thielemans W
    Langmuir; 2019 Feb; 35(6):2289-2302. PubMed ID: 30672300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on surface coating of phospholipid vesicles with a non-ionic polymer.
    Meland HG; Røv-Johnsen A; Smistad G; Hiorth M
    Colloids Surf B Biointerfaces; 2014 Feb; 114():45-52. PubMed ID: 24161505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective Viscosity of Polymer Solutions: Relation to the Determination of the Depletion Thickness and Thickness of the Adsorbed Layer of Cellulose Derivatives.
    Hoogendam CW; Peters JCW; Tuinier R; de Keizer A ; Cohen Stuart MA ; Bijsterbosch BH
    J Colloid Interface Sci; 1998 Nov; 207(2):309-316. PubMed ID: 9792774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of aggregate structure in mercerized cellulose/LiCl.DMAc solution using light scattering and rheological measurements.
    Aono H; Tatsumi D; Matsumoto T
    Biomacromolecules; 2006 Apr; 7(4):1311-7. PubMed ID: 16602754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic light scattering of aqueous solutions of linear aggregates induced by thermal denaturation of ovalbumin.
    Nemoto N; Koike A; Osaki K; Koseki T; Doi E
    Biopolymers; 1993 Apr; 33(4):551-9. PubMed ID: 8467064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chain conformation of sulfated derivatives of beta-glucan from sclerotia of Pleurotus tuber-regium.
    Zhang M; Zhang L; Wang Y; Cheung PC
    Carbohydr Res; 2003 Nov; 338(24):2863-70. PubMed ID: 14667707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport Properties of Commercial Cellulose Nanocrystals in Aqueous Suspension Prepared from Chemical Pulp via Sulfuric Acid Hydrolysis.
    Arai K; Horikawa Y; Shikata T
    ACS Omega; 2018 Oct; 3(10):13944-13951. PubMed ID: 30411054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static light scattering and small-angle neutron scattering study on aggregated recombinant gelatin in aqueous solution.
    Ramzi A; Sutter M; Hennink WE; Jiskoot W
    J Pharm Sci; 2006 Aug; 95(8):1703-11. PubMed ID: 16795011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of sodium glycodeoxycholate micellar aggregates from small-angle X-ray scattering and light-scattering techniques.
    Cozzolino S; Galantini L; Giglio E; Hoffmann S; Leggio C; Pavel NV
    J Phys Chem B; 2006 Jun; 110(25):12351-9. PubMed ID: 16800558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.