These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36365528)

  • 1. Exact Enumeration Approach to Estimate the Theta Temperature of Interacting Self-Avoiding Walks on the Simple Cubic Lattice.
    Huang SS; Hsieh YH; Chen CN
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Winding angles of long lattice walks.
    Hammer Y; Kantor Y
    J Chem Phys; 2016 Jul; 145(1):014906. PubMed ID: 27394124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a polymer growth process with an equilibrium multicritical collapse phase transition: the meeting point of swollen, collapsed, and crystalline polymers.
    Doukas J; Owczarek AL; Prellberg T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031103. PubMed ID: 21230021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping in self-avoiding walks with nearest-neighbor attraction.
    Hooper W; Klotz AR
    Phys Rev E; 2020 Sep; 102(3-1):032132. PubMed ID: 33076037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Position and Orientation Distributions for Locally Self-Avoiding Walks in the Presence of Obstacles.
    Skliros A; Chirikjian GS
    Polymer (Guildf); 2008 Mar; 49(6):1701-1715. PubMed ID: 18496591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient simulation of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation method.
    Székely T; Burrage K; Zygalakis KC; Barrio M
    BMC Syst Biol; 2014 Jun; 8():71. PubMed ID: 24939084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-dimensional polymer collapse: pseudo-first-order transition in interacting self-avoiding walks.
    Prellberg T; Owczarek AL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3780-9. PubMed ID: 11088895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nature of the collapse transition in interacting self-avoiding trails.
    Oliveira TJ; Stilck JF
    Phys Rev E; 2016 Jan; 93(1):012502. PubMed ID: 26871113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A growth walk model for estimating the canonical partition function of interacting self-avoiding walk.
    Narasimhan SL; Krishna PS; Ponmurugan M; Murthy KP
    J Chem Phys; 2008 Jan; 128(1):014105. PubMed ID: 18190183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy of the interacting self-avoiding walk at the θ point.
    Franchini S; Balzan R
    Phys Rev E; 2020 Sep; 102(3-1):032143. PubMed ID: 33075968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confined Polymers as Self-Avoiding Random Walks on Restricted Lattices.
    Benito J; Karayiannis NC; Laso M
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of a single polymer chain on a surface: effects of the potential range.
    Klushin LI; Polotsky AA; Hsu HP; Markelov DA; Binder K; Skvortsov AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022604. PubMed ID: 23496541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple model for the DNA denaturation transition.
    Causo MS; Coluzzi B; Grassberger P
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3958-73. PubMed ID: 11088917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate estimate of the critical exponent nu for self-avoiding walks via a fast implementation of the pivot algorithm.
    Clisby N
    Phys Rev Lett; 2010 Feb; 104(5):055702. PubMed ID: 20366773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HP-sequence design for lattice proteins--an exact enumeration study on diamond as well as square lattice.
    Narasimhan SL; Rajarajan AK; Vardharaj L
    J Chem Phys; 2012 Sep; 137(11):115102. PubMed ID: 22998288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous critical behavior in the polymer collapse transition of three-dimensional lattice trails.
    Bedini A; Owczarek AL; Prellberg T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011123. PubMed ID: 23005384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-avoiding random walk with multiple site weightings and restrictions.
    Krawczyk J; Prellberg T; Owczarek AL; Rechnitzer A
    Phys Rev Lett; 2006 Jun; 96(24):240603. PubMed ID: 16907227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coil-globule transition of a single short polymer chain: an exact enumeration study.
    Ponmurugan M; Narasimhan SL; Krishna PS; Murthy KP
    J Chem Phys; 2007 Apr; 126(14):144906. PubMed ID: 17444742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interacting growth walk: a model for generating compact self-avoiding walks.
    Narasimhan SL; Krishna PS; Murthy KP; Ramanadham M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):010801. PubMed ID: 11800670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation studies of ring polymers at athermal and theta conditions.
    Fuereder I; Zifferer G
    J Chem Phys; 2011 Nov; 135(18):184906. PubMed ID: 22088080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.