BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36365551)

  • 1. Mode I Fatigue of Fibre Reinforced Polymeric Composites: A Review.
    Gao X; Umair M; Nawab Y; Latif Z; Ahmad S; Siddique A; Yang H
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Stress Level and Fibre Volume Fraction on Fatigue Performance of Glass Fibre-Reinforced Polyester Composites.
    Zaghloul MY; Zaghloul MMY; Zaghloul MMY
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental Investigations of Bond Behaviour of High-Strength Micro Steel Fibres in Ultra-High Performance Concrete under Cyclic Tensile Loading.
    Lanwer JP; Höper S; Gietz L; Kowalsky U; Empelmann M; Dinkler D
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fatigue Model to Predict Interlaminar Damage of FRP Composite Laminates Subjected to Mode I Load.
    Khan SA; Rahimian Koloor SS; King Jye W; Siebert G; Tamin MN
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lap Shear Strength and Fatigue Analysis of Continuous Carbon-Fibre-Reinforced 3D-Printed Thermoplastic Composites by Varying the Load and Fibre Content.
    Saeed K; Mcilhagger A; Dooher T; Ullah J; Manzoor F; Velay X; Archer E
    Polymers (Basel); 2024 Feb; 16(5):. PubMed ID: 38475263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing the Fatigue Resistance of Strain-Hardening Cement-Based Composites (SHCC) by Experimental-Virtual Multi-Scale Material Design.
    Junger D; Storm J; Müller S; Kaliske M; Mechtcherine V
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delamination of Novel Carbon Fibre-Based Non-Crimp Fabric-Reinforced Thermoplastic Composites in Mode I: Experimental and Fractographic Analysis.
    Mohsin MAA; Iannucci L; Greenhalgh ES
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of microfasteners to produce damage tolerant composite structures.
    Partridge IK; Hallett SR
    Philos Trans A Math Phys Eng Sci; 2016 Jul; 374(2071):20150277. PubMed ID: 27242299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Stacking Sequence on Fatigue Behaviour of Hybrid Pineapple Leaf Fibre/Carbon-Fibre-Reinforced Epoxy Composites.
    Hashim MKR; Majid MSA; Jamir MRM; Kasim FH; Sultan MTH; Shah AUM; Ahmad KA; Basri AA
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Robust Numerical Methodology for Fatigue Damage Evolution Simulation in Composites.
    Russo A; Sellitto A; Curatolo P; Acanfora V; Saputo S; Riccio A
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation and Modeling of the Fatigue Damage Behavior of Polymer Composites at Reversed Cyclic Loading.
    Koch I; Just G; Brod M; Chen J; Doblies A; Dean A; Gude M; Rolfes R; Hopmann C; Fiedler B
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31141891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Properties of Nonwoven Reinforced Thermoplastic Polyurethane Composites.
    Tausif M; Pliakas A; O'Haire T; Goswami P; Russell SJ
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28772977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short fibre-reinforced composite for extensive direct restorations: a laboratory and computational assessment.
    Barreto BC; Van Ende A; Lise DP; Noritomi PY; Jaecques S; Sloten JV; De Munck J; Van Meerbeek B
    Clin Oral Investig; 2016 Jun; 20(5):959-66. PubMed ID: 26374748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Polymer Matrix on Inelastic Strain Development in PI- and PEI-Based Composites Reinforced with Short Carbon Fibers under Low-Cyclic Fatigue.
    Panin SV; Bogdanov AA; Eremin AV; Buslovich DG; Shilko IS
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and Numerical Assessment of Fibre Bridging Toughening Effects on the Compressive Behaviour of Delaminated Composite Plates.
    Riccio A; Russo A; Sellitto A; Toscano C; Alfano D; Zarrelli M
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32138254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue Life Prediction of Fiber-Reinforced Ceramic-Matrix Composites with Different Fiber Preforms at Room and Elevated Temperatures.
    Li L
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling of Environmental Ageing of Polymers and Polymer Composites-Durability Prediction Methods.
    Starkova O; Gagani AI; Karl CW; Rocha IBCM; Burlakovs J; Krauklis AE
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On Cyclic-Fatigue Crack Growth in Carbon-Fibre-Reinforced Epoxy-Polymer Composites.
    Michel S; Murphy N; Kinloch AJ; Jones R
    Polymers (Basel); 2024 Feb; 16(3):. PubMed ID: 38337324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Finite Element Study to Investigate the Mechanical Behaviour of Unidirectional Recycled Carbon Fibre/Glass Fibre-Reinforced Epoxy Composites.
    Karuppannan Gopalraj S; Kärki T
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.