These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 36365559)

  • 1. Recent Advances in the Application of Natural and Synthetic Polymer-Based Scaffolds in Musculoskeletal Regeneration.
    Ye B; Wu B; Su Y; Sun T; Guo X
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive Silk Fibroin-Based Hybrid Biomaterials for Musculoskeletal Engineering: Recent Progress and Perspectives.
    Wu R; Li H; Yang Y; Zheng Q; Li S; Chen Y
    ACS Appl Bio Mater; 2021 Sep; 4(9):6630-6646. PubMed ID: 35006966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering.
    Fan J; Abedi-Dorcheh K; Sadat Vaziri A; Kazemi-Aghdam F; Rafieyan S; Sohrabinejad M; Ghorbani M; Rastegar Adib F; Ghasemi Z; Klavins K; Jahed V
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering.
    Ko HF; Sfeir C; Kumta PN
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1981-97. PubMed ID: 20308112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional biomaterials for tendon/ligament repair and regeneration.
    Tang Y; Wang Z; Xiang L; Zhao Z; Cui W
    Regen Biomater; 2022; 9():rbac062. PubMed ID: 36176715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances of medical polyhydroxyalkanoates in musculoskeletal system.
    Mi CH; Qi XY; Ding YW; Zhou J; Dao JW; Wei DX
    Biomater Transl; 2023; 4(4):234-247. PubMed ID: 38282701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives.
    Dong C; Lv Y
    Polymers (Basel); 2016 Feb; 8(2):. PubMed ID: 30979136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Perspectives of Protein in Bone Tissue Engineering: Bone Structure, Ideal Scaffolds, Fabrication Techniques, Applications, Scopes, and Future Advances.
    Aslam Khan MU; Aslam MA; Bin Abdullah MF; Stojanović GM
    ACS Appl Bio Mater; 2024 Jul; ():. PubMed ID: 39007509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery.
    Janmohammadi M; Nazemi Z; Salehi AOM; Seyfoori A; John JV; Nourbakhsh MS; Akbari M
    Bioact Mater; 2023 Feb; 20():137-163. PubMed ID: 35663339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of Carbon Nanotubes in Bone Tissue Regeneration and Engineering: Superiority, Concerns, Current Advancements, and Prospects.
    Pei B; Wang W; Dunne N; Li X
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31652533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of natural polymers in bone tissue engineering.
    Guo L; Liang Z; Yang L; Du W; Yu T; Tang H; Li C; Qiu H
    J Control Release; 2021 Oct; 338():571-582. PubMed ID: 34481026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of collagen based composite scaffolds for bone regeneration.
    Zhang D; Wu X; Chen J; Lin K
    Bioact Mater; 2018 Mar; 3(1):129-138. PubMed ID: 29744450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, Properties, and Application of Graphene-Based Materials in Tissue Engineering Scaffolds.
    Xue W; Du J; Li Q; Wang Y; Lu Y; Fan J; Yu S; Yang Y
    Tissue Eng Part B Rev; 2022 Oct; 28(5):1121-1136. PubMed ID: 34751592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Graphene Scaffolds for Skeletal Muscle Regeneration: Future Perspectives.
    Palmieri V; Sciandra F; Bozzi M; De Spirito M; Papi M
    Front Bioeng Biotechnol; 2020; 8():383. PubMed ID: 32432094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in PLGA-based biomaterials for bone tissue regeneration.
    Jin S; Xia X; Huang J; Yuan C; Zuo Y; Li Y; Li J
    Acta Biomater; 2021 Jun; 127():56-79. PubMed ID: 33831569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conductive biomaterials for muscle tissue engineering.
    Dong R; Ma PX; Guo B
    Biomaterials; 2020 Jan; 229():119584. PubMed ID: 31704468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications.
    Chandika P; Heo SY; Kim TH; Oh GW; Kim GH; Kim MS; Jung WK
    Int J Biol Macromol; 2020 Dec; 164():2329-2357. PubMed ID: 32795569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.