These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36365725)

  • 1. Effects of Hydrothermal Processing on
    Rivas S; Santos V; Parajó JC
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365725
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetic modeling of brewery's spent grain autohydrolysis.
    Carvalheiro F; Garrote G; Parajó JC; Pereira H; Gírio FM
    Biotechnol Prog; 2005; 21(1):233-43. PubMed ID: 15903262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidic processing of hemicellulosic saccharides from pine wood: product distribution and kinetic modeling.
    Rivas S; González-Muñoz MJ; Santos V; Parajó JC
    Bioresour Technol; 2014 Jun; 162():192-9. PubMed ID: 24747674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification.
    El Hage R; Chrusciel L; Desharnais L; Brosse N
    Bioresour Technol; 2010 Dec; 101(23):9321-9. PubMed ID: 20655207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Eucalyptus globulus wood autohydrolysis conditions on the reaction products.
    Garrote G; Kabel MA; Schols HA; Falqué E; Domínguez H; Parajó JC
    J Agric Food Chem; 2007 Oct; 55(22):9006-13. PubMed ID: 17900164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can the cold tolerance of C4 photosynthesis in Miscanthus x giganteus relative to Zea mays be explained by differences in activities and thermal properties of Rubisco?
    Wang D; Naidu SL; Portis AR; Moose SP; Long SP
    J Exp Bot; 2008; 59(7):1779-87. PubMed ID: 18503044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autohydrolysis of Miscanthus x giganteus for the production of xylooligosaccharides (XOS): kinetics, characterization and recovery.
    Chen MH; Bowman MJ; Dien BS; Rausch KD; Tumbleson ME; Singh V
    Bioresour Technol; 2014 Mar; 155():359-65. PubMed ID: 24463409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A detailed kinetic model for the hydrothermal decomposition process of sewage sludge.
    Yin F; Chen H; Xu G; Wang G; Xu Y
    Bioresour Technol; 2015 Dec; 198():351-7. PubMed ID: 26409104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for optimizing the enzymatic hydrolysis of ionic liquid-pretreated lignocellulose.
    Shill K; Miller K; Clark DS; Blanch HW
    Bioresour Technol; 2012 Dec; 126():290-7. PubMed ID: 23079416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valorisation of a leguminous species, Sesbania grandiflora, by means of hydrothermal fractionation.
    Yáñez R; Garrote G; Díaz MJ
    Bioresour Technol; 2009 Dec; 100(24):6514-23. PubMed ID: 19660941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant-Parasitic Nematodes Are Potential Pathogens of Miscanthus × giganteus and Panicum virgatum Used for Biofuels.
    Mekete T; Reynolds K; Lopez-Nicora HD; Gray ME; Niblack TL
    Plant Dis; 2011 Apr; 95(4):413-418. PubMed ID: 30743326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Chemical Composition of
    Gismatulina YA; Budaeva VV; Kortusov AN; Kashcheyeva EI; Gladysheva EK; Mironova GF; Skiba EA; Shavyrkina NA; Korchagina AA; Zolotukhin VN; Sakovich GV
    Plants (Basel); 2022 Oct; 11(20):. PubMed ID: 36297815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The improvement of enzymatic hydrolysis efficiency of rape straw and Miscanthus giganteus polysaccharides.
    Swiątek K; Lewandowska M; Swiątek M; Bednarski W; Brzozowski B
    Bioresour Technol; 2014 Jan; 151():323-31. PubMed ID: 24269826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion.
    Moldes AB; Bustos G; Torrado A; Domínguez JM
    Appl Biochem Biotechnol; 2007 Dec; 143(3):244-56. PubMed ID: 18057452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological basis of chilling tolerance and early-season growth in miscanthus.
    Fonteyne S; Muylle H; Lootens P; Kerchev P; Van den Ende W; Staelens A; Reheul D; Roldán-Ruiz I
    Ann Bot; 2018 Feb; 121(2):281-295. PubMed ID: 29300823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of levulinic acid and furfural production from Miscanthus × giganteus.
    Dussan K; Girisuta B; Haverty D; Leahy JJ; Hayes MH
    Bioresour Technol; 2013 Dec; 149():216-24. PubMed ID: 24103645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous pretreatment of agricultural wastes: characterization of soluble reaction products.
    Gullón P; Pereiro G; Alonso JL; Parajó JC
    Bioresour Technol; 2009 Dec; 100(23):5840-5. PubMed ID: 19570673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation.
    Villaverde JJ; Li J; Ek M; Ligero P; de Vega A
    J Agric Food Chem; 2009 Jul; 57(14):6262-70. PubMed ID: 19552425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What cell wall components are the best indicators for
    Adams JMM; Winters AL; Hodgson EM; Gallagher JA
    Biotechnol Biofuels; 2018; 11():67. PubMed ID: 29563970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity and glycan masking of cell wall microstructures in the stems of Miscanthus x giganteus, and its parents M. sinensis and M. sacchariflorus.
    Xue J; Bosch M; Knox JP
    PLoS One; 2013; 8(11):e82114. PubMed ID: 24312403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.