These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36365754)

  • 1. Coarse-Grained Simulations of Release of Drugs Housed in Flexible Nanogels: New Insights into Kinetic Parameters.
    Quesada-Pérez M; Pérez-Mas L; Carrizo-Tejero D; Maroto-Centeno JA; Ramos-Tejada MDM; Martín-Molina A
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-grained simulations of diffusion controlled release of drugs from neutral nanogels: Effect of excluded volume interactions.
    Maroto-Centeno JA; Quesada-Pérez M
    J Chem Phys; 2020 Jan; 152(2):024107. PubMed ID: 31941292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct determination of forces between charged nanogels through coarse-grained simulations.
    Quesada-Pérez M; Maroto-Centeno JA; Martín-Molina A; Moncho-Jordá A
    Phys Rev E; 2018 Apr; 97(4-1):042608. PubMed ID: 29758622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning HIV drug release from a nanogel-based in situ forming implant by changing nanogel size.
    Town AR; Taylor J; Dawson K; Niezabitowska E; Elbaz NM; Corker A; Garcia-Tuñón E; McDonald TO
    J Mater Chem B; 2019 Jan; 7(3):373-383. PubMed ID: 32254724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-sensitive nanogels in the presence of salt: explicit coarse-grained simulations.
    Quesada-Pérez M; Ahualli S; Martín-Molina A
    J Chem Phys; 2014 Sep; 141(12):124903. PubMed ID: 25273470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competition between excluded-volume and electrostatic interactions for nanogel swelling: effects of the counterion valence and nanogel charge.
    Adroher-Benítez I; Martín-Molina A; Ahualli S; Quesada-Pérez M; Odriozola G; Moncho-Jordá A
    Phys Chem Chem Phys; 2017 Mar; 19(9):6838-6848. PubMed ID: 28218325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solute diffusion in gels: Thirty years of simulations.
    Quesada-Pérez M; Martín-Molina A
    Adv Colloid Interface Sci; 2021 Jan; 287():102320. PubMed ID: 33296722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of electrostatic interactions to improve controlled drug delivery from nanogels.
    Mauri E; Chincarini GMF; Rigamonti R; Magagnin L; Sacchetti A; Rossi F
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():308-315. PubMed ID: 28024591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancement in nanogel formulations provides controlled drug release.
    Ahmed S; Alhareth K; Mignet N
    Int J Pharm; 2020 Jun; 584():119435. PubMed ID: 32439585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse grained model of diffusion in entangled bidisperse polymer melts.
    Picu RC; Rakshit A
    J Chem Phys; 2007 Oct; 127(14):144909. PubMed ID: 17935441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-grained Monte Carlo simulations of nanogel-polyelectrolyte complexes: electrostatic effects.
    Pérez-Mas L; Martín-Molina A; Quesada-Pérez M
    Soft Matter; 2020 Mar; 16(12):3022-3028. PubMed ID: 32129421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreactive nanogels as versatile polymer networks with tunable in situ drug release kinetics.
    Escobedo HD; Stansbury JW; Nair DP
    J Mech Behav Biomed Mater; 2020 Aug; 108():103755. PubMed ID: 32310108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A coarse-grained model for polyethylene glycol in bulk water and at a water/air interface.
    Prasitnok K; Wilson MR
    Phys Chem Chem Phys; 2013 Oct; 15(40):17093-104. PubMed ID: 24005163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel propyl karaya gum nanogels for bosentan: In vitro and in vivo drug delivery performance.
    Laha B; Das S; Maiti S; Sen KK
    Colloids Surf B Biointerfaces; 2019 Aug; 180():263-272. PubMed ID: 31059984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarse-Grained Simulations of Three-Armed Star Polymer Melts and Comparison with Linear Chains.
    Liu L; den Otter WK; Briels WJ
    J Phys Chem B; 2018 Nov; 122(44):10210-10218. PubMed ID: 30351124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-Protein Docking with Large-Scale Backbone Flexibility Using Coarse-Grained Monte-Carlo Simulations.
    Kurcinski M; Kmiecik S; Zalewski M; Kolinski A
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanogels Capable of Triggered Release.
    Korzhikov-Vlakh V; Tennikova T
    Adv Biochem Eng Biotechnol; 2021; 178():99-146. PubMed ID: 33665715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyplex Nanogel formulations for drug delivery of cytotoxic nucleoside analogs.
    Vinogradov SV; Zeman AD; Batrakova EV; Kabanov AV
    J Control Release; 2005 Sep; 107(1):143-57. PubMed ID: 16039001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principle approach to rescale the dynamics of simulated coarse-grained macromolecular liquids.
    Lyubimov I; Guenza MG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031801. PubMed ID: 22060394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.