These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36365800)

  • 1. Deep Learning-Based NMPC for Local Motion Planning of Last-Mile Delivery Robot.
    Imad M; Doukhi O; Lee DJ; Kim JC; Kim YJ
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments.
    Yang Z; Li J; Yang L; Wang Q; Li P; Xia G
    Math Biosci Eng; 2023 Jan; 20(1):145-178. PubMed ID: 36650761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in Unknown Outdoor Environments: Real-Time Flight Experiments.
    Doukhi O; Lee DJ
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal Motion Planning in GPS-Denied Environments Using Nonlinear Model Predictive Horizon.
    Younes YA; Barczyk M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trajectory Tracking and Obstacle Avoidance of Robotic Fish Based on Nonlinear Model Predictive Control.
    Wang R; Wang M; Zhang Y; Zhao Q; Zheng X; Gao H
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation.
    Yang X; Moallem M; Patel RV
    IEEE Trans Syst Man Cybern B Cybern; 2005 Dec; 35(6):1214-24. PubMed ID: 16366247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obstacle Avoidance and Path Planning Methods for Autonomous Navigation of Mobile Robot.
    Katona K; Neamah HA; Korondi P
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion Planning of Autonomous Mobile Robot Using Recurrent Fuzzy Neural Network Trained by Extended Kalman Filter.
    Zhu Q; Han Y; Liu P; Xiao Y; Lu P; Cai C
    Comput Intell Neurosci; 2019; 2019():1934575. PubMed ID: 30863434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging Expert Demonstration Features for Deep Reinforcement Learning in Floor Cleaning Robot Navigation.
    Cimurs R; Merchán-Cruz EA
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning.
    Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H
    IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OctoPath: An OcTree-Based Self-Supervised Learning Approach to Local Trajectory Planning for Mobile Robots.
    Trăsnea B; Ginerică C; Zaha M; Măceşanu G; Pozna C; Grigorescu S
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34067237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Hybrid Model for Obstacle Detection and Avoidance in Robot Operating System Framework (Rapidly Exploring Random Tree and Dynamic Windows Approach).
    Adiuku N; Avdelidis NP; Tang G; Plastropoulos A
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time map building and navigation for autonomous robots in unknown environments.
    Oriolo G; Ulivi G; Vendittelli M
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(3):316-33. PubMed ID: 18255950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time navigation of mecanum wheel-based mobile robot in a dynamic environment.
    Shafiq MU; Imran A; Maznoor S; Majeed AH; Ahmed B; Khan I; Mohamed A
    Heliyon; 2024 Mar; 10(5):e26829. PubMed ID: 38562506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local Path Planning for Mobile Robots Based on Fuzzy Dynamic Window Algorithm.
    Sun Y; Wang W; Xu M; Huang L; Shi K; Zou C; Chen B
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Generalized Laser Simulator Algorithm for Mobile Robot Path Planning with Obstacle Avoidance.
    Muhammad A; Ali MAH; Turaev S; Abdulghafor R; Shanono IH; Alzaid Z; Alruban A; Alabdan R; Dutta AK; Almotairi S
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous Navigation by Mobile Robot with Sensor Fusion Based on Deep Reinforcement Learning.
    Ou Y; Cai Y; Sun Y; Qin T
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel Sensor-Space Lattice Planner for Real-Time Obstacle Avoidance.
    Martinez Rocamora B; Pereira GAS
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective Free-Driving Region Detection for Mobile Robots by Uncertainty Estimation Using RGB-D Data.
    Nguyen TK; Nguyen PT; Nguyen DD; Kuo CH
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.