These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36365819)

  • 1. Improved Feature Parameter Extraction from Speech Signals Using Machine Learning Algorithm.
    Abdusalomov AB; Safarov F; Rakhimov M; Turaev B; Whangbo TK
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing.
    Jung YH; Hong SK; Wang HS; Han JH; Pham TX; Park H; Kim J; Kang S; Yoo CD; Lee KJ
    Adv Mater; 2020 Sep; 32(35):e1904020. PubMed ID: 31617274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals.
    Ferrando Chacón JL; Fernández de Barrena T; García A; Sáez de Buruaga M; Badiola X; Vicente J
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algorithms and Techniques for the Structural Health Monitoring of Bridges: Systematic Literature Review.
    Sonbul OS; Rashid M
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards Contactless Silent Speech Recognition Based on Detection of Active and Visible Articulators Using IR-UWB Radar.
    Shin YH; Seo J
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic emission corrosion feature extraction and severity prediction using hybrid wavelet packet transform and linear support vector classifier.
    May Z; Alam MK; Nayan NA; Rahman NAA; Mahmud MS
    PLoS One; 2021; 16(12):e0261040. PubMed ID: 34914761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature selection for speech emotion recognition in Spanish and Basque: on the use of machine learning to improve human-computer interaction.
    Arruti A; Cearreta I; Alvarez A; Lazkano E; Sierra B
    PLoS One; 2014; 9(10):e108975. PubMed ID: 25279686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of dynamic time warping optimization algorithm in speech recognition of machine translation.
    Jiang S; Chen Z
    Heliyon; 2023 Nov; 9(11):e21625. PubMed ID: 38027668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise-robust acoustic signature recognition using nonlinear Hebbian learning.
    Lu B; Dibazar A; Berger TW
    Neural Netw; 2010 Dec; 23(10):1252-63. PubMed ID: 20655704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimising Speaker-Dependent Feature Extraction Parameters to Improve Automatic Speech Recognition Performance for People with Dysarthria.
    Marini M; Vanello N; Fanucci L
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dementia Detection from Speech Using Machine Learning and Deep Learning Architectures.
    Kumar MR; Vekkot S; Lalitha S; Gupta D; Govindraj VJ; Shaukat K; Alotaibi YA; Zakariah M
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on the Extraction Methods of Timbre Features in Vocal Singing Based on Machine Learning.
    Zang L
    Comput Intell Neurosci; 2022; 2022():5074829. PubMed ID: 36164425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Speaker Recognition System Based on Gaussian Mixture Models, Cepstral Analysis, and Genetic Selection of Distinctive Features.
    Kamiński KA; Dobrowolski AP
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of acoustic feature parameters using myoelectric signals.
    Lee KS
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1587-95. PubMed ID: 20172775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparative Survey of Feature Extraction and Machine Learning Methods in Diverse Acoustic Environments.
    Bonet-Solà D; Alsina-Pagès RM
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper-Limb Motion Recognition Based on Hybrid Feature Selection: Algorithm Development and Validation.
    Li Q; Liu Y; Zhu J; Chen Z; Liu L; Yang S; Zhu G; Zhu B; Li J; Jin R; Tao J; Chen L
    JMIR Mhealth Uhealth; 2021 Sep; 9(9):e24402. PubMed ID: 34473067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Way Feature Extraction for Speech Emotion Recognition Using Deep Learning.
    Aggarwal A; Srivastava A; Agarwal A; Chahal N; Singh D; Alnuaim AA; Alhadlaq A; Lee HN
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodal Data Fusion of Electromyography and Acoustic Signals for Thai Syllable Recognition.
    Jong NS; de Herrera AGS; Phukpattaranont P
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):1997-2006. PubMed ID: 33108301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel speech emotion recognition method based on feature construction and ensemble learning.
    Guo Y; Xiong X; Liu Y; Xu L; Li Q
    PLoS One; 2022; 17(8):e0267132. PubMed ID: 35969579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.