BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 36365832)

  • 1. Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits-A Systematic Review.
    Fu J; Choudhury R; Hosseini SM; Simpson R; Park JH
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper limb soft robotic wearable devices: a systematic review.
    Bardi E; Gandolla M; Braghin F; Resta F; Pedrocchi ALG; Ambrosini E
    J Neuroeng Rehabil; 2022 Aug; 19(1):87. PubMed ID: 35948915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary Validation of Proportional Myoelectric Control of A Commercially Available Robotic Ankle Exoskeleton.
    Hybart RL; Ferris DP
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-5. PubMed ID: 36176129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Intelligence-Based Wearable Robotic Exoskeletons for Upper Limb Rehabilitation: A Review.
    Vélez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and kinematic effects of a soft exosuit on arm movements.
    Xiloyannis M; Chiaradia D; Frisoli A; Masia L
    J Neuroeng Rehabil; 2019 Feb; 16(1):29. PubMed ID: 30791919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation].
    Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D-printed passive exoskeleton for upper limb assistance in children with motor disorders: proof of concept through an electromyography-based assessment.
    Sanchez C; Blanco L; Del Río C; Urendes E; Costa V; Raya R
    PeerJ; 2023; 11():e15095. PubMed ID: 37013145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor unit drive: a neural interface for real-time upper limb prosthetic control.
    Twardowski MD; Roy SH; Li Z; Contessa P; De Luca G; Kline JC
    J Neural Eng; 2019 Feb; 16(1):016012. PubMed ID: 30524105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Myoelectric Control Interface for Upper-Limb Robotic Rehabilitation Following Spinal Cord Injury.
    McDonald CG; Sullivan JL; Dennis TA; O'Malley MK
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):978-987. PubMed ID: 32167899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Completely Portable and Concealable, Lightweight Assistive Exosuit for Upper Limbs
    Darmanian MA; Chua MX; Wu L
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling.
    Durandau G; Farina D; Asín-Prieto G; Dimbwadyo-Terrer I; Lerma-Lara S; Pons JL; Moreno JC; Sartori M
    J Neuroeng Rehabil; 2019 Jul; 16(1):91. PubMed ID: 31315633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic cost of walking with electromechanical ankle exoskeletons under proportional myoelectric control on a treadmill and outdoors.
    Hybart R; Villancio-Wolter KS; Ferris DP
    PeerJ; 2023; 11():e15775. PubMed ID: 37525661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Soft Exosuit for Flexible Upper-Extremity Rehabilitation.
    Lessard S; Pansodtee P; Robbins A; Trombadore JM; Kurniawan S; Teodorescu M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1604-1617. PubMed ID: 29994617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRUX: A compliant robotic upper-extremity exosuit for lightweight, portable, multi-joint muscular augmentation.
    Lessard S; Pansodtee P; Robbins A; Baltaxe-Admony LB; Trombadore JM; Teodorescu M; Agogino A; Kurniawan S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1633-1638. PubMed ID: 28814054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance.
    Dunkelberger N; Schearer EM; O'Malley MK
    Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proportional myoelectric and compensating control of a cable-conduit mechanism-driven upper limb exoskeleton.
    Xiao F
    ISA Trans; 2019 Jun; 89():245-255. PubMed ID: 30711342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.