These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36365881)

  • 1. Predicting Chemical Carcinogens Using a Hybrid Neural Network Deep Learning Method.
    Limbu S; Dakshanamurthy S
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Dose-Dependent Carcinogenicity of Chemical Mixtures Using a Novel Hybrid Neural Network Framework and Mathematical Approach.
    Limbu S; Dakshanamurthy S
    Toxics; 2023 Jul; 11(7):. PubMed ID: 37505571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Dose-Range Chemical Toxicity using Novel Hybrid Deep Machine-Learning Method.
    Limbu S; Zakka C; Dakshanamurthy S
    Toxics; 2022 Nov; 10(11):. PubMed ID: 36422913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Machine-Learning-Driven Pathophysiology-Based New Approach Method for the Dose-Dependent Assessment of Hazardous Chemical Mixtures and Experimental Validations.
    Limbu S; Glasgow E; Block T; Dakshanamurthy S
    Toxics; 2024 Jun; 12(7):. PubMed ID: 39058133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification.
    Banerjee I; Ling Y; Chen MC; Hasan SA; Langlotz CP; Moradzadeh N; Chapman B; Amrhein T; Mong D; Rubin DL; Farri O; Lungren MP
    Artif Intell Med; 2019 Jun; 97():79-88. PubMed ID: 30477892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a developed triple-classification machine learning model for carcinogenic prediction of hazardous organic chemicals to the US, EU, and WHO based on Chinese database.
    Hao N; Sun P; Zhao W; Li X
    Ecotoxicol Environ Saf; 2023 Apr; 255():114806. PubMed ID: 36948010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Certain investigation on hybrid neural network method for classification of ECG signal with the suitable a FIR filter.
    Jayaraman Rajendiran DK; Ganesh Babu C; Priyadharsini K; Karthi SP
    Sci Rep; 2024 Jul; 14(1):15087. PubMed ID: 38956261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning.
    Hartling S; Sagan V; Sidike P; Maimaitijiang M; Carron J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30875732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tongue image quality assessment based on a deep convolutional neural network.
    Jiang T; Hu XJ; Yao XH; Tu LP; Huang JB; Ma XX; Cui J; Wu QF; Xu JT
    BMC Med Inform Decis Mak; 2021 May; 21(1):147. PubMed ID: 33952228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
    Adamidi ES; Mitsis K; Nikita KS
    Comput Struct Biotechnol J; 2021; 19():2833-2850. PubMed ID: 34025952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian optimized multimodal deep hybrid learning approach for tomato leaf disease classification.
    Khan B; Das S; Fahim NS; Banerjee S; Khan S; Al-Sadoon MK; Al-Otaibi HS; Islam ARMT
    Sci Rep; 2024 Sep; 14(1):21525. PubMed ID: 39277634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the prediction of IDC breast cancer staging from gene expression profiles using hybrid feature selection methods and deep learning architecture.
    Kishore A; Venkataramana L; Prasad DVV; Mohan A; Jha B
    Med Biol Eng Comput; 2023 Nov; 61(11):2895-2919. PubMed ID: 37530887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unlocking the potential of AI: Machine learning and deep learning models for predicting carcinogenicity of chemicals.
    Guo W; Liu J; Dong F; Hong H
    J Environ Sci Health C Toxicol Carcinog; 2024 Sep; ():1-28. PubMed ID: 39228157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning and deep learning-based approach to categorize Bengali comments on social networks using fused dataset.
    Mohi Uddin KM; Hamim H; Mim MNT; Akhter A; Uddin MA
    PLoS One; 2024; 19(10):e0308862. PubMed ID: 39361557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches.
    Singh KP; Gupta S; Rai P
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):465-75. PubMed ID: 23856075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Amharic News Categorization Using Deep Learning Models.
    Endalie D; Haile G
    Comput Intell Neurosci; 2021; 2021():3774607. PubMed ID: 34354742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches.
    Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T
    Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.