BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36366055)

  • 1. Estimation of the Kinematics and Workspace of a Robot Using Artificial Neural Networks.
    Boanta C; Brișan C
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics and workspace analysis of 4SPRR-SPR parallel robots.
    Luo L; Hou L; Zhang Q; Wei Y; Wu Y
    PLoS One; 2021; 16(1):e0239150. PubMed ID: 33471792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of artificial intelligence in safe human-robot interactions.
    Najmaei N; Kermani MR
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):448-59. PubMed ID: 20699212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient neural network approach to dynamic robot motion planning.
    Yang SX; Meng M
    Neural Netw; 2000 Mar; 13(2):143-8. PubMed ID: 10935758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic and Workspace Analysis of the Master Robot in the Sina
    Aghanouri M; Kheradmand P; Mousavi M; Moradi H; Mirbagheri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4777-4780. PubMed ID: 34892279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision Denavit-Hartenberg Parameter Calibration for Industrial Robots Using a Laser Tracker System and Intelligent Optimization Approaches.
    Khanesar MA; Yan M; Isa M; Piano S; Branson DT
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deeply-learnt damped least-squares (DL-DLS) method for inverse kinematics of snake-like robots.
    Omisore OM; Han S; Ren L; Elazab A; Hui L; Abdelhamid T; Azeez NA; Wang L
    Neural Netw; 2018 Nov; 107():34-47. PubMed ID: 30241968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speeding up the learning of robot kinematics through function decomposition.
    Ruiz de Angulo V; Torras C
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1504-12. PubMed ID: 16342491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural network control of multifingered robot hands using visual feedback.
    Zhao Y; Cheah CC
    IEEE Trans Neural Netw; 2009 May; 20(5):758-67. PubMed ID: 19369155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning Conflicts for C-arm Kinematic Modeling using Artificial Intelligence.
    Ledesma S; Guerrero-Turrubiates J; Gonzalez-Reyna SE; Almanza-Ojeda DL; Fallavollita P
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2421-2424. PubMed ID: 33018495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on Robot Fuzzy Neural Network Motion System Based on Artificial Intelligence.
    Hu J
    Comput Intell Neurosci; 2022; 2022():4347772. PubMed ID: 35186062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Neural Network Based Approach to Inverse Kinematics Problem for General Six-Axis Robots.
    Lu J; Zou T; Jiang X
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Graph Fitting and Sparse Deep Learning Model for Robot Pose Estimation.
    Rodziewicz-Bielewicz J; Korzeń M
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-varying modeling and intelligent compensation control of singletendon-sheath structure of surgical robot.
    Liang K; Tang Y; Jiang X; Wang S; Li J; Wang Y; Pan M
    Proc Inst Mech Eng H; 2023 Apr; 237(4):451-466. PubMed ID: 36882972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual adaptive dynamic control of mobile robots using neural networks.
    Bugeja MK; Fabri SG; Camilleri L
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Multimodal Neural Network Control System for Mechanically Driven Reconfigurable Robot.
    Youchun Z; Gongyong Z
    Comput Intell Neurosci; 2022; 2022():2447263. PubMed ID: 35665294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.
    Li Y; Sun R; Wang Y; Li H; Zheng X
    PLoS One; 2016; 11(11):e0165600. PubMed ID: 27806074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.